
Chapitre 29
Fonctions polynomiales et
racines

Au chapitre précédent nous nous sommes centrés sur le développement, l’opéra-
tion inverse s’appelle la factorisation.
Ce chapitre se concentre autour d’un résultat simple mais essentiel : si P (a) = 0,
alors P est factorisable par (X →a), déjà entrevu dans le premier chapitre de l’an-
née.
Pour pouvoir écrire cela, il faut d’abord justifier ce que signifie P (a) ou faire X = a
(pour a ↑ K). On définit alors ce qu’est une racine d’un polynôme, une racine
d’ordre multiple. On généralise alors les relations de Viète qui lient les coefficients
d’un polynôme à ses racines.
Enfin, on se concentre sur le polynôme d’interpolation de Lagrange. Il est la ré-
ponse au problème : trouver le polynôme le plus simple (=petit en degré) qui passe
par une série de points donnés.
Dans ce chapitre, les résultats d’analyse classique sur R (théorème des valeurs
intermédiaires, théorème de Rolle. . .) seront fréquemment mobilisés à cause de la
« bijection naturelle » entre l’ensemble des polynômes et l’ensemble des fonctions
polynomiales.

Résumé -

Sommaire
1. Problèmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
2. Fonctions polynomiales et racines . . . . . . . . . . . . . . 607

2.1. Fonctions polynomiales . . . . . . . . . . . . . . . . . 607
2.2. Racines d’un polynôme . . . . . . . . . . . . . . . . . 607
2.3. Nombres maximales de racines et degré de P . . . . 608

3. Interpolation de Lagrange . . . . . . . . . . . . . . . . . . . 610
3.1. Présentation du problème et polynômes de Lagrange 610
3.2. Interpolation (de Lagrange) . . . . . . . . . . . . . . . 610

4. Racines multiples et formule de Taylor . . . . . . . . . . . 611
4.1. Formules de Taylor (polynômiale) . . . . . . . . . . . 611
4.2. Multiplicité d’une racine . . . . . . . . . . . . . . . . . 612

5. Relations coefficients-racines . . . . . . . . . . . . . . . . . 613
5.1. Polynôme scindé . . . . . . . . . . . . . . . . . . . . . 613
5.2. Fonctions symétriques élémentaires . . . . . . . . . . 613
5.3. Applications . . . . . . . . . . . . . . . . . . . . . . . . 615

6. Théorème fondamental de l’algèbre . . . . . . . . . . . . . 616
7. Bilan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



606 Fonctions polynomiales et racines

1. Problèmes

Si X est une « variable » qui ne signifie rien, si ce n’est la règle opératoire,
que veut dire que deux polynômes sont égaux.
Par exemple X 2 →1 et (X →1)↓ (X +1) sont-ils égaux ? Pourquoi ?

Problème 129 - Egalité de polynômes

Si l’on prolonge le problème précédent, à quelle condition deux poly-
nômes P et Q sont égaux, si ils vérifient

P (ak ) =Q(ak ) ↔ k ↑Np

Est-ce que cela dépend de p (plus il y a de conditions, plus il y a de
« chances » (ou nécessité) que P =Q) ?
Est-ce que cela dépend du corpsK sur lequel on travaille ?
(Exemple : X p → X s’annule en tous les nombres de Z

pZ et pourtant ce
n’est pas le polynôme nul. . .)

Problème 130 - Egalité de polynômes et racines

On réalise p expériences qui donne en des points x1, . . . xp des valeurs
y1, . . . yp respectivement.
Est-il possible de donner une expression simple (polynomiale, de degré
minimal), unique ( ?) qui lie yi à xi , pour tout i ↑Np ?

Problème 131 - Expérience et expression polynomiale

On a vu en début d’année (pourK=R ouC) ou dans un DS (pourK= Z
pZ )

qu’un polynôme de degré p ne peut admettre plus de p racines. Est-il
possible qu’il en admette exactement p, à tous les coups (ce qui donne
un théorème simple)?
On sait que (X → 1)6 n’admet qu’une racine : 1. Est-il possible d’élargir
la notion de racines pour que le théorème précédent soit juste. Ici, il
faudrait dire que 1 est 6 fois racines. . .

Problème 132 - Nombre de racines

On peut rencontrer des opérations polynomiales de plusieurs variables :
dans un calcul algébriques, deux nombres peuvent être à étudier en
particulier comme variables, les autres étant des paramètres. Avec la
formule des « petits Bernoullis » :

bn →an = (b →a)

(
n→1∑

k=0
bk an→1→k

)

Comment construire les polynômes de plusieurs variables Y n →X n ?
Est-ce que si ↔ P ↑K[X ,Y ] : ↔ a ↑K, P (a, a) = 0 =↗ P = (X →Y )Q ?

Problème 133 - Construction de K[X ,Y , Z , . . . ]
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2. Fonctions polynomiales et racines 607

Lorsqu’on développe ce polynôme, on trouve une expression du type

P =
n∑

i=0
ai X i .

Quel est le lien entre ces nombres ai et les xk ?
Le développement de petite valeur (et le théorème de Viète) donne le
sentiment que pour tout i ↑ [[0,n]], ai est une fonction polynomiale en
les n variables xi .
Quelle est cette expression? Que se passe-t-il lorsqu’on inverse dans
cette expression xi avec x j ? On parle de polynôme symétrique.
Réciproquement, est-ce que tout polynôme symétrique en {xk } est une
expression (polynomiale?) des ai ?

Problème 134 - Développement de

n∏

k=1
(X →xk )

2. Fonctions polynomiales et racines

2.1. Fonctions polynomiales

Soit P ↑K[X ], P = a0 +a1X +·· ·+an X n . L’application

P̃ : K ↘K

x ≃↘ a0 +a1x +·· ·+an xn

est appelée fonction polynomiale associée à P .

Définition - Fonctions polynomiales

STOP Remarque - De la fonction polynomiale au polynôme?
L’application P̃ se conçoit bien, mais la réciproque n’est pas forcément évi-
dente a priori.
Etant donnée une fonction, dont on sait qu’elle est polynomiale, pourquoi
pourrait-on lui associé comme antécédent un unique polynôme ?
Autrement écrit, a-ton nécessairement P̃ = Q̃ =↗ P =Q ?

Soient (P,Q) ↑K[X ]2, (ω,µ) ↑K2. On a

P̃Q = P̃Q̃

ω̃P =ωP̃

(P +Q = P̃ +Q̃

)P ⇐Q = P̃ ⇐Q̃

De plus siK=R, on a P̃ ⇒ = (̃P ⇒).

Théorème - Correspondance polynôme et fonction polynomiale

Démonstration
Il s’agit d’écrire les expressions correspondantes.

2.2. Racines d’un polynôme

Soient P ↑K[X ], a ↑K.
On dit que a est racine de P (ou est un zéro de P ) si P̃ (a) = 0.

Définition - Racine
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608 Fonctions polynomiales et racines

Soient P ↑K[X ], a ↑K.
Alors a est racine de P si et seulement il existe T ↑ K[X ] tel que P =
(X →a)T .
Dans ce cas on dit que X →a divise P dansK[X ].

Théorème - Racine et division

Démonstration

Commençons par une remarque calculatoire, en supposant que

P =
d∑

k=0
ak X k :

P → P̃ (a) =
d∑

k=1
ak (X k →ak ) =

d∑

k=1
ak (

k→1∑

h=0
X h ak→h→1)(X →a)

On note T =
d∑

k=1
ak (

k→1∑

h=0
X h ak→h→1) ↑K[X ].

Ainsi : a racine de P
si et seulement si P̃ (a) = 0 P = (X →a)T

Soient P ↑K[X ] et a1, a2, . . . , ak ↑K, k racines (distinctes) de P .

Alors
k∏

i=1
(X →ai ) divise P (i.e. il existe T ↑K[X ] tel que P = T ↓

k∏

i=1
(X →ai ).

Proposition - Factorisation

Démonstration

On procède par récurrence : en considérant, pour tout h ↑ [[1,k]] :

Ph : «
h∏

i=1
(X →ai ) divise P ».

— a1 est une racine de P , donc P = (X →a1)Q1. Donc P1 vraie.
— Soit h ↑ [[1,k →1]]. Supposons que Ph est vérifiée.

On a donc P =
h∏

i=1
(X → ai )Qh . ah+1 est par hypothèse une

racine de P , donc
h∏

i=1
(ah+1 →ai )Q̃h(ah+1) = 0.

Or un produit de réel est nul ssi l’un des termes est nul. Ce
qui n’est pas le cas des ah+1 →ai .
Donc Q̃h(ah+1) = 0, et donc Qh = (X →ah+1)Qh+1.

Ainsi P =
h+1∏

i=1
(X →ai )Qh+1, et donc Ph+1 est vraie.

2.3. Nombres maximales de racines et degré de P

Un polynôme non nul de degré inférieur ou égal à n admet au plus n
racines,
ce qui équivaut à :
Un polynôme de degré inférieur ou égal à n qui admet au moins n + 1

Corollaire - Nombre maximal de racines
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2. Fonctions polynomiales et racines 609

racines est nul.

Démonstration
L’équivalence est simplement due à la contraposition.
Si P est non nul, de degré n admettant k racines.

On a donc
k∏

i=1
(X →ai ) divise P ,

Donc deg(
k∏

i=1
(X →ai )) ⇑ degP = n, i.e. k =

k∑

i=1
1 ⇑ n.

On rappelle queK=R ou C.
Soit P ↑K[X ] tel que ↔a ↑K, P̃ (a) = 0 alors P = 0.

Corollaire - Critère de nullité d’un polynôme

Démonstration
Comme K est infini, P admet une infinité de racines distinctes,
donc plus que son degré. Et donc P = 0

Ce résultat (ainsi que le suivant) se généralise à K corps infini mais pas
au cas oùK est fini.

Attention - Cas de corps non fini. . .

L’application de K[X ] dans l’ensemble des fonctions polynomiales à coef-
ficients dansK qui à P associe P̃ est une bijection. On peut donc confondre
polynôme et fonction polynomiale et noter P (a) au lieu de P̃ (a).

Corollaire - BijectionK[X ] et fonction polynomiale

Ce corollaire permet de clore la question que nous nous étions posées en
début de chapitre.

Démonstration
Le problème n’est pas celui de la surjectivité (par définition des
fonctions polynomiales), mais de l’injectivité.
Si P et Q sont telles que pour tout x ↑ K, P̃ (x) = Q̃(x), alors
(P →Q(x) = 0.
Donc P →Q est le polynôme nul, i.e. P =Q.

Deux fonctions polynomiales sur R ou sur C sont égales si et seulement si
elles ont même degré et mêmes coefficients.

Corollaire - Egalité de FONCTIONS polynomiales

Démonstration
Si deux fonctions polynomiales sont égales, alors dans ce cas, les
deux polynômes associés sont les mêmes.
Et réciproquement

Exercice
Soit (P,Q) ↑R2[X ]2 tels que P̃ (0) = Q̃(0), P̃ (1) = Q̃(1), P̃ (2) = Q̃(2). Montrer que P =Q.
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610 Fonctions polynomiales et racines

3. Interpolation de Lagrange

3.1. Présentation du problème et polynômes de Lagrange

Pour toute cette partie, on considère : x1, . . . , xn des éléments distincts de K et y1, . . . , yn ↑
K.
En fait on cherche P le plus simple possible (= de degré minimal) tel que pour tout i ↑Nn ,
P (xi ) = yi .
On appelle un tel problème, un problème d’interpolation. C’est un problème classique en
science. . .

Heuristique - Problème d’interpolation

Les polynômes définis par

Li =

∏

h ⇓=i
(X →xh)

∏

h ⇓=i
(xi →xh)

vérifient ↔(i , j ) ↑ [[1,n]]2, Li (x j ) = ε j
i .

Proposition - Polynômes de Lagrange

Démonstration

Li (x j ) =

∏

h ⇓=i
(x j →xh)

∏

h ⇓=i
(xi →xh)

Donc si j ⇓= i , il existe un h tel que x j = xh et dans ce cas
Li (x j ) = 0.

si j = i , alors le produit ne s’annule pas, mais ce réduit :

Li (xi ) =

∏

h ⇓=i
(xi →xh)

∏

h ⇓=i
(xi →xh)

= 1.

Donc Li (x j ) = εi , j .

Bien que la notation semble faire croire que les Li ne dépendent que de
i (ou xi . . .). Il n’en est rien.
Chaque Li dépend bien de xi mais aussi totalement de la famille
(x1, x2, . . . xn) donc de chaque xh .

Attention - Dépendance de Li

3.2. Interpolation (de Lagrange)

Il existe un unique polynôme P de degré inférieur ou égal à n→1 vérifiant :

↔i ↑ [[1,n]],P (xi ) = yi .

C’est P =
n∑

i=1
yi Li .

Théorème - Interpolation selon Lagrange (minimal en degré)

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



4. Racines multiples et formule de Taylor 611

Démonstration

Concernant l’existence, il suffit de considérer : P =
n∑

i=1
yi Li ,

comme pour tout i ↑ [[1,n]], degLi = n →1, on a donc degP ⇑
n →1.

puis P (xi ) =
n∑

h=1
yhLh(xi ) =

n∑

h=1
yhεh,i = yi .

Concernant l’unicité : si Q vérifie les mêmes propriétés que P ,
alors P →Q est de degré n →1 et admet n racines distinctes :

x1, x2,. . . xn ,
donc P =Q.

En prenant yi = f (xi ), on a le corollaire suivant :

Soient f ↑ F (I ,R) et x1, . . . , xn n points distincts de I , alors il existe un
unique polynôme P de degré n → 1 coïncidant avec f en ces n points
(polynôme d’interpolation de Lagrange de f ).

Corollaire - Interpolation aux fonctions

Les polynômes Q ↑K[X ] tels que ↔i ↑ [[1,n]],Q(xi ) = yi sont les polynômes

de la forme
n∑

i=1
yi Li +T où T ↑ K [X ] admet x1, . . . , xn pour racines (entre

autres).

Corollaire - Interpolation selon Lagrange (général en degré)

Démonstration
Soit Q qui interpole (y1, . . . yn) et (x1, . . . xn), sans condition sur
les degrés.

Faisons la division euclidienne de Q par T =
n∏

i=1
(X →ai ).

T est degré n, donc Q = ST +R, avec degR ⇑ n →1.
Puis pour tout i ↑ [[1,n]], Q(xi ) = yi = S(xi )T (xi ) + R(xi ) = 0 +
R(xi ).
Comme degR ⇑ n →1 et R interpole (y1, . . . yn) et (x1, . . . xn), par

unicité : R =
n∑

i=1
yi Li .

Finalement : Q =
n∑

i=1
yi Li+T , avec T ayant x1, . . . , xn pour racines

(entre autres).

4. Racines multiples et formule de Taylor

4.1. Formules de Taylor (polynômiale)

Soient P ↑K[X ], degP = n, a ↑K. Alors :

P = P (a)+P ⇒(a)(X →a)+·· ·+ P (n)(a)

n!
(X →a)n =

n∑

k=0

P (k)(a)

k !
(X →a)k

Théorème - Formule de Taylor
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612 Fonctions polynomiales et racines

Démonstration

Notons T (X ) = P (X+a) =
n∑

k=0
ak (X+a)k =

n∑

k=0
bk X k Donc P (X ) =

T (X →a) =
n∑

k=0
bk (X →a)k .

Puis P (h) =
n∑

k=0
bk [(X →a)k ](h) =

n∑

k=h
bk

k !
(k →h)!

(X →a)k→h .

Et donc en a : P (h)(a) = h!bh +
n∑

k=h+1
bk

k !
(k →h)!

(a →a)h→k
︸ ︷︷ ︸

=0

.

Ainsi, bh = P (h)

h!
et donc P =

n∑

k=0

P (k)(a)

k !
(X →a)k

Dans l’interpolation de Lagrange, on cherche P
minimal (en degré) tel que

↔ i ↑Nr , P (xi ) = yi

Dans l’interpolation de Taylor, on cherche P
minimal (en degré) tel que

↔ i ↑Nr , P i (x) = yi

Il arrive, qu’on rencontre des problèmes d’in-
terpolation mixte entre ces deux problèmes
( HERMITE. . .)

Pour aller plus loin - Problème LA-
GRANGE/ TAYLOR La définition de la division euclidienne (et son usage) sera présenté au

chapitre suivant. . . Cet exercice semble un peu trop précoce, mais il est
bien en lien avec la formule de Tayor

Savoir faire - Division euclidienne et formule de Taylor

Exercice
Soient n > 2 et a ↑ C. Déterminer le reste et le quotient dans la division euclidienne de
X n +1 par (X →a)3.

4.2. Multiplicité d’une racine

Soient P ↑ K[X ], a ↑ K, m ↑ N⇔. On dit que a est racine de multiplicité m
(ou d’ordre (de multiplicité) m) de P si (X → a)m divise P mais (X → a)m+1

ne divise pas P .
Par extension, si P (a) ⇓= 0, on dit parfois que a est une racine de multiplicité
0 de P (c’est-à-dire n’est PAS racine de P ...).
On noteµ(a,P ), l’ordre de multiplicité de a comme racine de P (il peut être
nul)

Définition - Racine de multiplicité m

a est racine d’ordre m ssi P (X ) = (X →a)mQ(X ), avec Q(a) ⇓= 0
Savoir faire - Exploitation d’une racine d’ordre m

Soient P ↑K[X ], a ↑K, m ↑N⇔. Alors a est racine de multiplicité m de P si
et seulement si

P (a) = P ⇒(a) = ·· · = P (m→1)(a) = 0 et P (m)(a) ⇓= 0

Théorème - Caractérisation des racines multiples

Démonstration

Si a est une racine d’ordre m de P .
Alors P = (X →a)mQ(X ), avec Q(a) ⇓= 0.
La formule de Leibniz donne

P (k)(X ) =
k∑

h=0

(
k
h

)
[(X→a)m](h)Q(k→h)(X ) =

min(k,m)∑

h=0

k !m!
h!(k →h)!(m →h)!

(X→a)m→hQ(k→h)(X )
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5. Relations coefficients-racines 613

Donc

P (k)(a) =





0 si k < m
k !

(k →m)!
Q(k→m)(a) si k ↖ m

Ainsi pour k < m, P (k)(a) = 0 et P (m)(a) = m!Q(a) ⇓= 0 Réci-
proquement, on suppose que P (a) = P ⇒(a) = ·· · = P (m→1)(a) = 0
et P (m)(a) ⇓= 0.

on applique la formule de Taylor à P de degré n(> m) :

P (X ) =
n∑

k=0

P (k)(a)
k !

(X →a)k =
n∑

k=m

P (k)(a)
k !

(X →a)k = (X →a)mQ(X )

avec Q(X ) =
n∑

k=m

P (k)(a)
k !

(X →a)k→m , donc Q(a) = P (m)(a)
m!

⇓= 0.

Exercice
Déterminer une condition nécessaire et suffisante pour que (X +1)n+1 → X n+1 →1 ait au
moins une racine multiple (c’est-à-dire de multiplicité ↖ 2) dans C.

5. Relations coefficients-racines

5.1. Polynôme scindé

Nous allons formaliser des résultats vues en début d’année dans l’art de
calculer.

Un corps dont tous les polynômes sont nécessairement scindés est ap-
pelé un corps algébriquement clos.
Nous en reparlerons lorsque nous aurons vu le théorème fondamental
de l’algèbre

Savoir faire - Corps algébriquement clos

Soit P ↑K[X ]. On dit que P est scindé surK si P s’écrit

P = an

n∏

i=1
(X →xi )

où les xi sont les racines de P dansK comptées avec leur multiplicité (c’est-
à-dire écrites autant de fois que leur multiplicité) et an est le coefficient
dominant de P .

Définition - Polynôme scindé

STOP Remarque - CorpsK
Ce résultat dépend du corpsK.

5.2. Fonctions symétriques élémentaires

Soit P ↑K[X ] un polynôme scindé surK tel que degP = n.
Soient x1, x2, . . . , xn ses racines comptées avec leur multiplicité. On définit

Définition - Fonctions symétriques élémentaires
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614 Fonctions polynomiales et racines

les fonctions symétriques élémentaires des racines :

ϑ1 = x1 +·· ·+xn

ϑ2 = x1x2 +x1x3 +·· ·+x1xn +·· ·+xn→1xn =
∑

1⇑i< j⇑n
xi x j

...

ϑk =
∑

1⇑i1<···<ik⇑n
xi1 . . . xik

...

ϑn = x1x2 . . . xn

ϑk correspond à la somme de tous les possibles en prenant exactement
k éléments de Nn = {1,2, . . .n} et en multipliant les nombres xi indexés
par ces k éléments :

ϑk =
∑

Ik↙
Nn

k



∏

i↑Ik

xi

Evidemment, même si cela ne se note pas ϑk dépend aussi de n. . .

Savoir faire - Ecrire ces sommes (de Newton)

Analyse - Relation de récurrence
Remarquons que si l’on note ϑn

k le terme ϑ obtenu pour les
nombres x1, . . . xn .
On a donc

xnϑ
n→1
k→1 = xn ↓ (

∑

1⇑i1<i2···<ik→1⇑n→1
xi1 xi2 · · ·xik→1

=
∑

1⇑i1<i2···<ik→1⇑n→1
xi1 xi2 · · ·xik→1 xn

=
∑

1⇑i1<i2···<ik→1⇑n→1,ik=n
xi1 xi2 · · ·xik→1 xik

=ϑn
k →ϑn→1

k

Donc ϑn
k =ϑn→1

k +xnϑ
n→1
k→1.

Plus fort :
Tout polynôme symétrique deKn dansK s’ex-
prime à l’aide des fonctions symétriques élé-
mentaires ϑk .

Par exemple (exercice !), si on note Sp =
n

i=1
xp

i ,

on a :

1. Sp →ϑ1Sp→1+·· ·+(→1)n→1ϑn→1Sp→n +
(→1)nϑn Sp→n = 0 pour p ↖ n

2. Sp → ϑ1Sp→1 + ·· · + (→1)p→1ϑp→1S1 +
(→1)pϑp ↓p = 0 pour 1 ⇑ p ⇑ n →1

Ce résultat est à la base du théorème de Galois
sur les racines des équations polynomiales de
degré ↖ 5.

Pour aller plus loin - Généralisation

Exercice
Ecrire ϑ3 et ϑ4 pour n = 5

Notons Pn =ω(X →x1) . . . (X →xn ), on a donc Pn = (X →xn )Pn→1.
Et donc pour tout k ↑N

[Pn ]k = [Pn→1]k→1 →xn [Pn→1]k

Cette relation ressemble beaucoup à la relation vue plus haut (avec un changement de
signe).
Par ailleurs [Pn ]n =ω et ϑ0 = 1 (somme vide).
On montre alors par récurrence (sur n et pour tout k) :

ϑn
k = (→1)k [Pn ]n→k

ω
= (→1)k [Pn ]n→k

[Pn ]n

Heuristique - Relation coefficients-racines (par récurrence)

On a les relations suivantes entre les coefficients et les racines (écrites avec
leur multiplicité) du polynôme scindé P :

↔k ↑ [[1,n]], ϑk = (→1)k an→k

an
.

Théorème - Relations coefficients-racines
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5. Relations coefficients-racines 615

Démonstration

Supposons que P = an X n + an→1X n→1 + . . .+ a1X + a0 = an(X →
x1)(X →x2) · · · (X →xn).
Dans le développement de P (écrit initialement sous forme fac-
torisée), on obtient X p en prenant p termes X dans le produit et
en choisissant n →p termes dans l’ensemble {→xi , i ↑Nn}.
Il faut considérer tous les cas possibles, en raisonnant sur les in-
dices des xi et non sur les nombres xi eux-mêmes. :

ap X p = an ↓




∑

{i1,i2,...ip }↙(Nn
p )

(→xi1 )(→xi2 ) . . . (→xip )


 X p

ou encore :
ϑp =

∑

Ip↙(Nn
p )

∏

i↑Ip

xi = (→1)p ap

an

5.3. Applications

Cela permet d’écrire toute expression polynomiale en les racines d’un polynôme, inva-
riante par permutation, en fonction des coefficients du polynôme.
on peut en effet prouver qu’une telle expression s’exprime facilement à l’aide des ϑk .
en particulier Sk = xk

1 +·· ·xk
n s’exprime à l’aide des coefficients.

Heuristique - Fonctions symétriques générales

Exercice
Déterminer les triplets (a,b,c) ↑C3 tels que





a +b + c = 1
a2 +b2 + c2 = 3
a3 +b3 + c3 = 1

Voici une méthode, elle n’est pas unique.
Assuré du théorème d’existence (que nous ne démontrons pas), nous
pouvons chercher une méthode pour exprimer tout polynôme symé-
trique.
Soit P un tel polynôme (par exemple P = x4

1 +x4
2 +x4

3).

1. Il faut d’abord trouvé le degré de P ,
si on remplace tous les xi par X , on obtient un polynôme d’un
certain degré n.
Si ce polynôme possède plusieurs degré, alors on le coupe en
addition de polynômes dont les monomes sont tous de même
degré.
Sur notre exemple n = 4

2. Connaissant le degré de P , on considère des facteurs à identifier
devant le produit des ϑi de degré n.
Il faut savoir que pour tout i , deg(ϑi ) = i .
On a donc sur notre exemple :

P = Aϑ4
1 +Bϑ2

2 +Cϑ2
1ϑ2 +Dϑ1ϑ3

(3 racines, donc pas de ϑ4)

Savoir faire - Comment trouver la bonne combinaison en ϑi ?
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616 Fonctions polynomiales et racines

3. Il s’agit ensuite de trouver les valeurs des constantes A,B ,C . . . .
On peut prendre des valeurs particulières pour x1, x2 . . . .
Par exemple avec
— x1 = x2 = 0 et x3 = x, on a ϑ2 =ϑ3 = 0 et ϑ1 = x,

P = x4 = Ax4 =↗ A = 1

— x1 = x, x2 =→x, x3 = 0, on a ϑ1 = 0, ϑ2 =→x2,

P = 2x4 = B x4 =↗ B = 2

— x1 = x, x2 = x, x3 = 0, on a ϑ1 = 2x, ϑ2 = x2, ϑ3 = 0

P = 2x4 = 1(2x)4+2(x2)2+C (2x)2↓(x2) = (16+2+4C )x4 =↗C =→4

— x1 = 2x, x2 =→x, x3 = 2x, on a ϑ1 = 3x, ϑ2 = 0, ϑ3 =→4x3

P = 33x4 = 1(3x)4 +D(3x)↓ (→4x3) = (81→12D)x4 =↗ D = 4

Donc
x4

1 +x4
2 +x4

3 =ϑ4
1 +2ϑ2

2 →4ϑ2
1ϑ2 +4ϑ1ϑ3

On peut vérifier les calculs. . .

Jean Le Rond d’Alembert (1717-1783), est
un grand mathématicien, flamboyant, du
XVIIIème siècle. Il est néanmoins souvent plus
connu pour son travail avec Diderot dans la
rédaction de la première encyclopédie. . .
Sa démonstration du théorème de d’Alembert-
Gauss n’a pas résisté aux canons plus exigeants
des mathématiciens du XIXième. Il avait mon-
tré que toutes racines des polynômes de
C[X ] ne pouvait se trouver que dans C (pas
d’extension de corps possible comme pour
passer de R à C).
Quelques années plus tard, Gauss apporta une
demi-douzaine de démonstrations différentes
de ce théorème. . .

1
JAN Histoire - D’Alembert

Exercice
On note x1, x2, x3 les racines de X 3 →X 2 +4X +1.
Calculer S =

∑

i ⇓= j
x3

i x j .

6. Théorème fondamental de l’algèbre

Le théorème suivant est admis :

Soit P ↑C[X ], degP ↖ 1. Alors P possède au moins une racine dans C.
Théorème - Théorème de d’Alembert-Gauss

STOP Remarque - Démonstration du théorème de d’Alembert-Gauss
Bien que ce théorème soit énoncé dans cette partie de cours, toutes les
démonstrations connues exploitent quelques résultats de topologie (comme
le TVI par exemple).
Une démonstration consiste à considérer z ≃↘ |P (z)| et supposer que ↔ z,
|P (z)| > 0.

1. On se place sur un fermé K , il existe z0 tel que infz↑K |P (z)| = |P (z0)| >
0, d’après Weierstrass.

2. Or autour de z0 (z0+r eiϖ , r petit, ϖ ↑ [0,2ϱ[), il y a toujours un z tel que
P (z) < P (z0). . .

3. On peut prendre P ⇒(z0) ↑ C qui indique la pente de variation, et ϖ =
→arg(P ⇒(z0)).. . .

7. Bilan

Synthèse

↭ En regardant les valeurs prises (incarnation) par un polynôme (calcul
formel) dans un corps, on peut trouver une factorisation (formelle) du
polynôme.
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↭ Ces factorisations aident à résoudre le problème d’interpolation qu’on
retrouve classiquement en science, grâce au polynôme de Lagrange.
Mais aussi le théorème d’interpolation des dérivées (en un même
point) avec la formule de Taylor.

↭ Cette dernière formule permet de définir également l’ordre de multi-
plicité d’une racine, ce qui permet de conclure totalement la factorisa-
tion, même par des puissances de polynômes (racines de P de multi-
plicité ↖ 2).

↭ Si les polynômes se factorisent totalement (théorème de D’Alembert-
Gauss), alors on doit retrouver dans les coefficients d’un polynôme,
les traces de ses racines (par développement). Ce sont les formules de
Newton qui s’appuie sur une forme de super-symétrie !

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Division euclidienne et formule de Taylor.
— Savoir-faire - Exploitation d’une racine d’ordre m.
— Savoir-faire - Corps algébriquement clos.
— Savoir-faire - Ecrire les sommes (de Newton)
— Savoir-faire - Comment trouver la bonne combinaison en ϑi ?

Notations

Notations Définitions Propriétés Remarques
P̃ ApplicationK↘K, x ≃↘ P (x) P̃ (a) = 0 ∝↗′ Q tq P = (X →a)Q Par abus, on écrit P̃ = P
µ(a,P ) (ordre de) multiplicité de a comme racine

de P
µ(a,P ) = k ∞ P = (X →a)kQ avec Q(a) ⇓= 0 k = min{h ↑N | P (h)(a) ⇓= 0}+1

Li (X ) =
∏

j ⇓=i

X →x j

xi →x j
Polynômes d’interpolation de LAGRANGE Li (x j ) = εi , j Il dépend de tous les nombres dis-

tincts x1, x2, . . . , xn considérés
Il donne une solution particu-
lière au problème d’interpolation.
Il faut l’addition aux solutions ho-
mogènes.

Ta,P (X )=
n∑

k=0

P (k)(a)
k !

(X →a)k

Expression du développement de Taylor de
P

Ta,P = P Elle lie la potientielle racines en a
à P (k)(a)

ϑk=
∑

I↙
Nn

k


∏

i↑I
xi Fonctions symétriques élémentaires de P ϑk = (→1)k [P ]n→k

[P ]n
(P scindé) x1, . . . xn sont les racines de P

(comptées avec leur multiplicité)

La formule se générale à tous les
polynômes symétriques en les ra-
cines de P

Retour sur les problèmes

129. P =Q si et seulement si ↔ k ↑N, [P ]k = [Q]k .

130. Il suffit qu’il y ait max(degP,degQ) + 1 éléments distincts de K qui
annulent P →Q pour que P =Q en tout élément deK.
Il peut arriver que deux polynômes soient égaux en tout x ↑K (K fini
et de petites dimensions), mais les polynômes sont distincts. Ainsi de
X +1 et X 2 +1 sur Z

2Z [X ]. . .

131. Voir cours. C’est le polynôme de Lagrange+Homogène :

p∑

k=1
yk

∏

i ⇓=k

X →xi

xk →xi
+Q

p∏

i=1
(X →xi )

132. Voir cours

133. On a vu au chapitre précédent, dans une remarque, on peut définir
(par récurrence) :

K[X1, X2 . . . Xn+1] = (K[X1, . . . Xn]) [Xn+1]
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618 Fonctions polynomiales et racines

à condition d’accepter de se restreindre aux polynômes définis sur un
anneau et non un corps.
Dans ce cas la factorisation est plus compliquée. . .
On pourrait par exemple exploiter les petits Bernoullis. On fixe a ↑R.

P (X , a)→P (a, a) =
n∑

k=1
ak (a)(X k→ak ) = (X→a)

n∑

k=1
ak (a)

k→1∑

i=0
X i ak→1→i = (X→a)Qa(X )

où donc Qa est un polynôme. Mieux : ↔ k ↑N, [Qa]k ↑K[a], indépen-
dante de a.
On peut identifier, on note : Qk tel que ↔ a ↑K, Qk (a) = [Qa]k .
On obtient ainsi une factorisation de P par X →Y .

134. Voir cours.
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