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Chapitre

29

Fonctions polynomiales et
racines

Résumé -

Au chapitre précédent nous nous sommes centrés sur le développement, l'opéra-
tion inverse s'appelle la factorisation.

Ce chapitre se concentre autour d'un résultat simple mais essentiel : si P(a) = 0,
alors P est factorisable par (X — a), déja entrevu dans le premier chapitre de l'an-
née.

Pour pouvoir écrire cela, il faut d'abord justifier ce que signifie P(a) ou faire X = a
(pour a € K). On définit alors ce qu'est une racine d’'un polynome, une racine
d’ordre multiple. On généralise alors les relations de Viete qui lient les coefficients
d’'un polynéme a ses racines.

Enfin, on se concentre sur le polynéme d’interpolation de Lagrange. 1l est la ré-
ponse au probleme : trouver le polynéme le plus simple (=petit en degré) qui passe
par une série de points donnés.

Dans ce chapitre, les résultats d'analyse classique sur R (théoreme des valeurs
intermédiaires, théoreme de Rolle. . .) seront fréquemment mobilisés a cause de la
« bijection naturelle » entre l'ensemble des polynomes et I'ensemble des fonctions
polynomiales.
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606 Fonctions polynomiales et racines

1. Problemes

? Probleme 129 - Egalité de polyndomes
Si X est une « variable » qui ne signifie rien, si ce n'est la regle opératoire,
que veut dire que deux polyndémes sont égaux.
Par exemple X2 _1let(X-1)x (X+1) sont-ils égaux? Pourquoi?

? Probleme 130 - Egalité de polynomes et racines
Si 'on prolonge le probleme précédent, a quelle condition deux poly-
noémes P et Q sont égausx, si ils vérifient

Plap) =Qlay) VkeN,

Est-ce que cela dépend de p (plus il y a de conditions, plus il y a de
«chances » (ou nécessité) que P = Q)?

Est-ce que cela dépend du corps K sur lequel on travaille?

(Exemple : X” — X s’annule en tous les nombres de % et pourtant ce
n’est pas le polynome nul.. .)

? Probleme 131 - Expérience et expression polynomiale
On réalise p expériences qui donne en des points xj,...x, des valeurs
Y1,.-.Yp respectivement.
Est-il possible de donner une expression simple (polynomiale, de degré
minimal), unique (?) qui lie y; a x;, pour tout i € N, ?

? Probléeme 132 - Nombre de racines

On avu en début d’année (pour K = R ou C) oudans un DS (pour K = p—ZZ)
qu'un polyndme de degré p ne peut admettre plus de p racines. Est-il
possible qu’il en admette exactement p, a tous les coups (ce qui donne
un théoréme simple) ?

On sait que (X —1)® n’admet qu’une racine : 1. Est-il possible d’élargir
la notion de racines pour que le théoreme précédent soit juste. Ici, il
faudrait dire que 1 est 6 fois racines. ..

? Probleme 133 - Construction de K[X, Y, Z,...]

On peut rencontrer des opérations polynomiales de plusieurs variables :
dans un calcul algébriques, deux nombres peuvent étre a étudier en
particulier comme variables, les autres étant des parametres. Avec la
formule des « petits Bernoullis » :

n-1
b"—a"=m-a (Z bkanlk)
k=0

Comment construire les polyndmes de plusieurs variables Y" — X"*?
Est-cequesiVPeK[X,Y]:Vael, P(a,a)=0—=P=(X-Y)Q?

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



2. Fonctions polynomiales et racines 607

n
? Probléme 134 - Développement de [ [ (X — xx)
k=1

Lorsqu’on développe ce polynéme, on trouve une expression du type

n
pP= Z a; X'.

i=0
Quel est le lien entre ces nombres a; et les xj ?
Le développement de petite valeur (et le théoreme de Viete) donne le
sentiment que pour tout i € [[0, n]], a; est une fonction polynomiale en
les n variables x;.
Quelle est cette expression? Que se passe-t-il lorsqu’'on inverse dans
cette expression x; avec x;j ? On parle de polyndome symétrique.
Réciproquement, est-ce que tout polyndme symétrique en {x;} est une
expression (polynomiale?) des a; ?

2. Fonctions polynomiales et racines

2.1. Fonctions polynomiales

(~ A
Définition - Fonctions polynomiales
Soit PeK[X],P=ag+a; X +---+a,X". Lapplication
P: K —K
X —apt+aix+--+apx"
est appelée fonction polynomiale associée a P.
& J

Remarque - De la fonction polynomiale au polyn6me?

Lapplication P se concoit bien, mais la réciproque n’est pas forcément évi-
dente a priori.

Etant donnée une fonction, dont on sait qu’elle est polynomiale, pourquoi
pourrait-on lui associé comme antécédent un unique polynéme?
Autrement écrit, a-ton nécessairement P = Q = P = Q?

Théoréme - Correspondance polyndome et fonction polynomiale
Soient (P, Q) € K[X]?, (A, ) e K?.On a

PQ=PQ
AP =P
P+Q=P+Q
PoQ=PoQ

De plussiK =R, ona P’ = (P').

Démonstration

2.2. Racines d’'un polynéme

Définition - Racine
Soient P e K[X], a € K.
On dit que a est racine de P (ou est un zéro de P) si P(a) =0.
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Fonctions polynomiales et racines

Théoreme - Racine et division
Soient P e K[X],a € K.

X-a)T.

Dans ce cas on dit que X — a divise P dans [K[X].

Alors a est racine de P si et seulement il existe T € K[X] tel que P =

Démonstration

Proposition - Factorisation
Soient P € K[X] et ay, ay, ..., a € K, k racines (distinctes) de P.
k

k
Alors [ [ (X — a;) divise P (i.e. il existe T € K[X] telque P =T x [ [ (X — a;).
i=1

i=1

Démonstration

2.3. Nombres maximales de racines et degré de P

Corollaire - Nombre maximal de racines

Un polyndme non nul de degré inférieur ou égal a n admet au plus n
racines,

ce qui équivaut a :

Un polyndéme de degré inférieur ou égal a n qui admet au moins n + 1
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2. Fonctions polynomiales et racines 609

racines est nul.

Démonstration

Corollaire - Critére de nullité d’'un polynéme
On rappelle que K =R ou C.

Soit P € K[X] tel que Ya €K, P(a) =0 alors P =0.

Démonstration

[ Attention - Cas de corps non fini...

Ce résultat (ainsi que le suivant) se généralise a K corps infini mais pas
au cas ou K est fini.

Corollaire - Bijection K[X] et fonction polynomiale

Lapplication de K[X] dans 'ensemble des fonctions polynomiales a coef-
ficients dans K qui a P associe P est une bijection. On peut donc confondre
polynome et fonction polynomiale et noter P(a) au lieu de P(a).

Ce corollaire permet de clore la question que nous nous étions posées en
début de chapitre.

Démonstration

Corollaire - Egalité de FONCTIONS polynomiales

Deux fonctions polynomiales sur R ou sur C sont égales si et seulement si
elles ont méme degré et mémes coefficients.

Démonstration

Exercice
Soit (B.Q) € Ry [X]? tels que P(0) = Q(0), P(1) = Q(1), P(2) = Q(2). Montrer que P = Q.

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



610

Fonctions polynomiales et racines

3. Interpolation de Lagrange

3.1. Présentation du probléme et polynomes de Lagrange

< Heuristique - Probleme d’interpolation

Pour toute cette partie, on considere : x1,..., X, des éléments distincts de K et y1,...,ypn €
K.

En fait on cherche P le plus simple possible (= de degré minimal) tel que pour tout i € Ny,
Pxj) =yi.

On appelle un tel probléme, un probleme d’interpolation. C’est un probléme classique en
science. ..

Proposition - Polynd6mes de Lagrange
Les polynémes définis par

[TX—xp)

s
[T —xn)
h#i

vérifient V (i, j) € [1, n]?, L; (x;) = 67.

Démonstration

M Attention - Dépendance de L;

Bien que la notation semble faire croire que les L; ne dépendent que de
i (oux;...).Iln'en estrien.

Chaque L; dépend bien de x; mais aussi totalement de la famille
(x1,x2,...Xx5) donc de chaque xj,.

3.2. Interpolation (de Lagrange)

Théoréme - Interpolation selon Lagrange (minimal en degré)
Il existe un unique polynéme P de degré inférieur ou égal a n— 1 vérifiant :

Vie[1,n], P(x;) = yi.

n
CestP=) yL;.

i=1
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4. Racines multiples et formule de Taylor

Démonstration

En prenant y; = f(x;), on ale corollaire suivant :

Corollaire - Interpolation aux fonctions

Soient f € #(I,R) et x1,...,Xx, n points distincts de I, alors il existe un
unique polynéme P de degré n —1 coincidant avec f en ces n points
(polynéme d’interpolation de Lagrange de f).

Corollaire - Interpolation selon Lagrange (général en degré)

Les polynémes Q € K[X] tels que Vi € [1, n], Q(x;) = y; sont les polynémes
n

de la forme )_ y;L; + T ot T € K[X]

i=1

admet x3,..., X, pour racines (entre
i=
autres).

Démonstration

4. Racines multiples et formule de Taylor

4.1. Formules de Taylor (polyn6émiale)

Théoréme - Formule de Taylor
Soient P € K[X], degP = n, a€ K. Alors :

pm n pk
P=P@+P(@(X-a)+-+ (m(X—“)"=Z .(m

n!
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Fonctions polynomiales et racines

Pour aller plus loin - Probléme LA-
GRANGE/TAYLOR

Dans I'interpolation de Lagrange, on cherche P

minimal (en degré) tel que

VieN, P(x;)=y;
Dans l'interpolation de Taylor, on cherche P
minimal (en degré) tel que

VieN,, Pi(x)zy,-
Il arrive, qu’on rencontre des problémes d’in-
terpolation mixte entre ces deux problemes
(HERMITE...)

Démonstration

/~Savoir faire - Division euclidienne et formule de Taylor
La définition de la division euclidienne (et son usage) sera présenté au
chapitre suivant... Cet exercice semble un peu trop précoce, mais il est
bien en lien avec la formule de Tayor

Exercice

Soient n > 2 et a € C. Déterminer le reste et le quotient dans la division euclidienne de
X" +1 par (X -a)3.

4.2. Multiplicité d'une racine

(- A
Définition - Racine de multiplicité m

Soient P € K[X], a € K, m € N*. On dit que a est racine de multiplicité m
(ou d’ordre (de multiplicité) m) de P si (X — a)" divise P mais (X — a)"™"!
ne divise pas P.

Par extension, si P(a) # 0, on dit parfois que a est une racine de multiplicité
0 de P (c’est-a-dire n’est PAS racine de P...).

On note u(a, P),!'ordre de multiplicité de a comme racine de P (il peut étre
\nul)

J/

/~Savoir faire - Exploitation d’'une racine d’ordre m
| aestracine d’ordre m ssi P(X) = (X — a)"Q(X), avec Q(a) # 0

Théoreme - Caractérisation des racines multiples
Soient P € K[X], a € K, m € N*. Alors a est racine de multiplicité m de P si
et seulement si

P@=P@=--=P" Va)=0et P (a) #£0

Démonstration

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



5. Relations coefficients-racines

613

Exercice

Déterminer une condition nécessaire et suffisante pour que (X + 1 - X+l it au
moins une racine multiple (c’est-a-dire de multiplicité = 2) dans C.

5. Relations coefficients-racines

5.1. Polynome scindé

Nous allons formaliser des résultats vues en début d’année dans I'art de
calculer.

/~Savoir faire - Corps algébriquement clos
Un corps dont tous les polyndomes sont nécessairement scindés est ap-
pelé un corps algébriquement clos.

Nous en reparlerons lorsque nous aurons vu le théoreme fondamental
de 'algébre

(Définition - Polynome scindé
Soit P € K[X]. On dit que P est scindé sur KK si P s’écrit

n
P=ay H(X_xi)
i=1

ol les x; sontlesracines de P dans K comptées avec leur multiplicité (c’est-

a-dire écrites autant de fois que leur multiplicité) et a, est le coefficient
(dominant de P.

J

Remarque - Corps K
Ce résultat dépend du corps K.

5.2. Fonctions symétriques élémentaires

Définition - Fonctions symétriques élémentaires
Soit P € K[X] un polyndme scindé sur K tel que degP = n.
Soient x1, X2,..., X, ses racines comptées avec leur multiplicité. On définit
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Pour aller plus loin - Généralisation
Plus fort :
Tout polynéme symétrique de K" dans K s’ex-
prime a I'aide des fonctions symétriques élé-
mentaires o.
n
Par exemple (exercice!), si on note Sp = > xlp,
]
ona: '
1 Sp=01Sp-1+-+(=D"o, 1Sy n+
(-1)"0,Sp-n=0pourp=n
2. Sp—01Sp_1 + -+ (-DP7 Lo, 181 +
(-DPopxp=0pourl<spsn-1
Ce résultat est a la base du théoréeme de Galois

sur les racines des équations polynomiales de
degré = 5.

les fonctions symétriques élémentaires des racines :
or1=x1+-+Xp
O2=X1X2+X1 X3+ -+ X1 Xp+- -+ Xp1Xpn= Z x,—xj
1<i<js<n

O = Z Xiy « o Xip

1<ij<-<irpsn
Op=X1X2...Xp

\ J

/“Savoir faire - Ecrire ces sommes (de Newton)
o correspond a la somme de tous les possibles en prenant exactement
k éléments de N, = {1,2,...n} et en multipliant les nombres x; indexés
par ces k éléments :

o=, [l

Lec (M) i€l

Evidemment, méme si cela ne se note pas o dépend aussi de n...

) Analyse - Relation de récurrence

Exercice

Ecrire 03 et 04 pour n=5

~*Heuristique - Relation coefficients-racines (par récurrence)
Notons P, = A(X — x1)...(X —xy),onadonc P, = (X — x,)Pp—1.
Et donc pour tout k e N
[Pnli = [Pn-1]k-1~*n[Pn-1lk
Cette relation ressemble beaucoup a la relation vue plus haut (avec un changement de
signe).
Par ailleurs [P;], = A et 0g = 1 (somme vide).
On montre alors par récurrence (sur n et pour tout k) :

kWPnlnk _ gk Prlnk
A [Pnln

o =1

Théoreme - Relations coefficients-racines
On ales relations suivantes entre les coefficients et les racines (écrites avec
leur multiplicité) du polynéme scindé P :

Vkell,nl, of=(Dkdnk
(233
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5. Relations coefficients-racines 615

Démonstration

5.3. Applications

<*Heuristique - Fonctions symétriques générales
Cela permet d’écrire toute expression polynomiale en les racines d’'un polynéme, inva-
riante par permutation, en fonction des coefficients du polynome.
on peut en effet prouver qu'une telle expression s’exprime facilement a I'aide des 0.
en particulier S = x{c +---x,, s’exprime a I'aide des coefficients.

Exercice
Déterminer les triplets (a, b, ¢) € C3 tels que

a+b+c =1
a?+b*+c? =3
A+3+S3 =1

/~Savoir faire - Comment trouver la bonne combinaison en g; ?

Voici une méthode, elle n’est pas unique.

Assuré du théoreme d’existence (que nous ne démontrons pas), nous
pouvons chercher une méthode pour exprimer tout polynéme symé-
trique.

Soit P un tel polyndme (par exemple P = xj + x; + x3).

1. 1l faut d’abord trouvé le degré de P,
si on remplace tous les x; par X, on obtient un polynéme d'un
certain degré n.
Si ce polynome posséde plusieurs degré, alors on le coupe en
addition de polynomes dont les monomes sont tous de méme
degré.
Sur notre exemple n =4

2. Connaissant le degré de P, on considére des facteurs a identifier
devant le produit des o; de degré n.
Il faut savoir que pour tout i, deg(o;) = i.
On a donc sur notre exemple :

P= Ao% + Bag + Ca%ag +Doo3

(3 racines, donc pas de 04)
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-
|&)\ Histoire - D’Alembert

Jean Le Rond d’Alembert (1717-1783), est
un grand mathématicien, flamboyant, du
XVIIléme siécle. Il est néanmoins souvent plus
connu pour son travail avec Diderot dans la
rédaction de la premiére encyclopédie. ..

Sa démonstration du théoréme de d’Alembert-
Gauss n’a pas résisté aux canons plus exigeants
des mathématiciens du XIXieme. 1l avait mon-
tré que toutes racines des polynémes de
C[X] ne pouvait se trouver que dans C (pas
d’extension de corps possible comme pour
passerdeR aC).

Quelques années plus tard, Gauss apporta une
demi-douzaine de démonstrations différentes

\de ce théoreme. .. )

3. Il s’agit ensuite de trouver les valeurs des constantes A, B, C....
On peut prendre des valeurs particuliéres pour x;,x>....
Par exemple avec
— x1=xp2=0etxg=x,0naoy=03=0eto; =1,

P=x'z=Ax"= A=1
— X1=X,X=—-Xx,x3=0,0nao :0,02:—x2,
P=2x'=Bx*=B=2
— X=X, X2=X,X3=0,0na0, =2x,02=x%,03=0
P=2x"=12x)"+2(x*)2+C2x)*x (x*) = 16+2+4C)x* = C=-4
— X1 =2X, X2 =—X,X3=2Xx,0nao; =3x, 02=0,03=—4x3
P=33x"=138x)"+D@Bx) x (-4x*) = (81-12D)x* = D =4

Donc
4,4, 4_ 4 2 2
X]+X,+X3=07+205—-40702+40103

On peut vérifier les calculs...

Exercice
On note x1, X2, x3 les racines de X3 — X2 +4X + 1.
Calculer S= ) x?xj.

i#j

6. Théoréme fondamental de 'algebre

Le théoreme suivant est admis :

Théoréeme - Théoréme de d’Alembert-Gauss
Soit P € C[X], degP = 1. Alors P posséde au moins une racine dans C.

Remarque - Démonstration du théoréme de d’Alembert-Gauss

Bien que ce théoréeme soit énoncé dans cette partie de cours, toutes les
démonstrations connues exploitent quelques résultats de topologie (comme
le TVI par exemple).

Une démonstration consiste a considérer z — |P(z)| et supposer que V z,
|P(z)| > 0.

1. On se place sur un fermé K, il existe z tel que inf cx |P(2)| = |P(zp)| >
0, d’apres Weierstrass.

2. Orautourde zg (zg+ reie, r petit, 0 € [0,2x]), il y a toujours un z tel que
P(z) < P(zp)...

3. On peut prendre P'(zg) € C qui indique la pente de variation, et 6 =

—arg(P'(z9))....
7. Bilan
Synthese

~+ En regardant les valeurs prises (incarnation) par un polyndéme (calcul
formel) dans un corps, on peut trouver une factorisation (formelle) du
polynéme.
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~» Ces factorisations aident a résoudre le probléme d’interpolation qu’on
retrouve classiquement en science, grace au polyndéme de Lagrange.
Mais aussi le théoreme d’interpolation des dérivées (en un méme
point) avec la formule de Taylor.

~+ Cette derniére formule permet de définir également I'ordre de multi-
plicité d’'une racine, ce qui permet de conclure totalement la factorisa-
tion, méme par des puissances de polynémes (racines de P de multi-
plicité = 2).

~> Siles polyndmes se factorisent totalement (théoreme de D’Alembert-
Gauss), alors on doit retrouver dans les coefficients d'un polynéme,
les traces de ses racines (par développement). Ce sont les formules de
Newton qui s’appuie sur une forme de super-symétrie!

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Division euclidienne et formule de Taylor.

— Savoir-faire - Exploitation d'une racine d’ordre m.

— Savoir-faire - Corps algébriquement clos.

— Savoir-faire - Ecrire les sommes (de Newton)

— Savoir-faire - Comment trouver la bonne combinaison en o; 2

Notations
Notations Définitions Propriétés Remarques
p Application K — K, x — P(x) P(@)=0<=3QtqP=(X-a)Q Par abus, on écrit P = P
u(a, P) (ordre de) multiplicité de a comme racine pu(a,P)=ke P=(X- a)kQ avec Q(a) #0 k=min{heN| PW () # 0} +1
de P
- X ] . . .
L;(X)= H Polynémes d’interpolation de LAGRANGE Li(xj)=08;; 1l dépend de tous les nombres dis-
j#i Y T Xj tincts x1, X, ..., X, considérés
11 donne une solution particu-
liere au probleme d’interpolation.
11 faut I'addition aux solutions ho-
mogenes.
Ty p(X)= Expression du développement de Taylorde T, p =P Elle lie la potientielle racines en a
n pk)(g) k P ar® ()
k! X=a)
. s 12 . k [P ]n—k . ) .
Op= Z H X; Fonctions symétriques élémentaires de P or=(-1) P (P scindé) X1,...Xp sont les racines de P
Ic(Nk"] i€l [Pln (comptées avec leur multiplicité)

La formule se générale a tous les
polyndomes symétriques en les ra-
cines de P

Retour sur les problemes

129. P=QsietseulementsiV k€N, [Pli = [Qlg.

130. 11 suffit qu’il y ait max(deg P degQ) + 1 éléments distincts de K qui
annulent P — Q pour que P = Q en tout élément de K.
Il peut arriver que deux polynomes soient égaux en tout x € K (K fini
et de petites dimensions), mais les polyndmes sont distincts. Ainsi de
X+1et X2 +1sur &[X]...

131. Voir cours. C’est le polyndme de Lagrange+Homogéne :

p X — ; p
Y e [ —=+Q[[x-x)

k=1 ik Xk~ Xi i=1

132. Voir cours

133. On a vu au chapitre précédent, dans une remarque, on peut définir
(par récurrence) :

K[X1, Xz... Xps1] = (K[X1, ... Xp]) [Xna]
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618 Fonctions polynomiales et racines

a condition d’accepter de se restreindre aux polyndémes définis sur un
anneau et non un corps.

Dans ce cas la factorisation est plus compliquée. ..

On pourrait par exemple exploiter les petits Bernoullis. On fixe a € R.

n n k-1
PX,@-P(a,a) =) ar(@(X*-ad")=X-a) ) ar(@ ) X'a* 7" = (X-a)Qa(X)
k=1 k=1 i=0
ol donc Q, est un polynéme. Mieux : V k € N, [Q]k € Klal, indépen-
dante de a.
On peut identifier, on note : Qx tel que V a € K, Qx(a) = [Qglk.
On obtient ainsi une factorisation de P par X - Y.

134. Voir cours.
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