
Chapitre 30
L’anneau euclidien des
polynômes

Bien qu’il s’agisse encore de factorisation de polynôme, ce chapitre est totalement
différent du précédent.
En nous concentrant sur la division euclidienne des polynômes, nous voyons que
l’ensembleK[X ] ressemble profondément à Z.
Ce chapitre ressemble donc profondément au chapitre d’arithmétique sur Z. On
définit le PGCD de deux polynômes avec l’algorithme d’Eucllide adapté, la relation
de Bézout, le lemme de Gauss. . ., puis le PPCM de deux ou plusieurs polynômes.
Les polynômes irréductibles sont les polynômes premiers de K[X ]. On retrouve les
équivalents aux théorème d’Euclide (décomposition unique en produit de poly-
nômes irréductibles). Dans C[X ], les polynômes irréductibles sont les polynômes
de degré→ 1 (Théorème de d’Alembert-Gauss). Et dansR[X ], il s’agit des polynômes
de degré → 1 ou de degré 2 avec un discriminant ω< 0.
Toute la théorie des congruences s’exportent de Z à K[X ]. . . Ce chapitre est aussi
pour nous l’occasion de donner quelques vocabulaires sur les anneaux (idéaux. . .).
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620 L’anneau euclidien des polynômes

1. Problèmes

L’anneau Z n’est pas un corps, commeK[X ].
Néanmoins, nous avons su développer tout un chapitre intéressant sur
l’étude de Z en développant l’arithmétique. Si l’on reprend ce chapitre,
on constate qu’à la racine des résultats (PGCD, nombres premiers et
congruences. . .) se trouve la division euclidienne.
Or nous avons également une division euclidienne dans K[X ] (à condi-
tion queK soit un corps).
Quels sont alors les résultats transposables de Z à K[X ] ? Qu’est-ce que
le PGCD de deux polynômes? Quand est-ce qu’on peut dire qu’un poly-
nôme est un polynôme premier ?

Problème 135 - Arithmétique

Le chapitre d’arithmétique sur Z s’est conclue avec les fonctions arith-
métiques vérifiant f (ab) = f (a)+ f (b) ou f (ab) = f (a) f (b) pour a↑b = 1.
Existe-t-il des fonctions additives sur les polynômes : f (PQ) = f (P ) +
f (Q) si P ↑Q = 1 ? C’est le cas de la fonction degré ou la valuation R-
adique.
Existe-t-il des fonctions multiplicatives sur les polynômes : f (PQ) =
f (P ) f (Q) si P ↑Q = 1 ?
C’est le cas évidemment de fk : P ↓↔ P k . Peut-on définir un produit de
convolution pour créer un groupe de fonction arithmétique?

f ↗ g : Q ↓↔
∑

P |Q, P unitaire
f (P )g (Q/P )

Problème 136 - Fonction arithmétique (multiplicative)

On sait que pour p premier, np ↘ n[P ].
A-t-on pour P , irréductible : QP ↘Q[P ] ? Mais que peut signifier QP ?
Et le grand théorème de FERMAT : Existe-t-il des polynômes A,B ,C et un
entier n tel que An +B n =C n ?

Problème 137 - Théorèmes de FERMAT

On démontre que concernant les corps finis, ils ne peuvent avoir pour
cardinal uniquement des nombres de la forme pk , avec p premier.
Nous savons déjà fabriqué LE corps à p éléments : il s’agit de Z

pZ .

Est-il possible de « fabriquer » LE corps à pk éléments?
La stratégie consiste à se placer sur le corps Z/pZ, puis l’anneau Z/
pZ[X ], et trouver un polynôme P de degré k irréductible dans cet anneau

de polynômes et enfin de considérer l’ensemble quotient
Z/pZ

(P )
(pour la

relation d’équivalence ·↘ ·[P ].
Est-il toujours possible de trouver un tel polynôme P irréductible, à tout
degré?
Comment montrer qu’on obtient bien un corps à pk éléments?

Problème 138 - Corps à pk
éléments
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2. Division euclidienne dansK[X ] 621

2. Division euclidienne dansK[X ]

2.1. Multiples d’un polynômes

Soit (A,B) ≃ K[X ]2, B ⇐= 0. On dit que B divise A dans K[X ] s’il existe
Q ≃K[X ] tel que A = BQ.
On dit aussi que A est divisible par B , que B est un diviseur de A, ou que A
est un multiple de B . On note B |A.

Définition - B divise A

Soit P un polynôme.
L’ensemble des multiples de P est noté PK[X ] ou (P ).

Définition - Ensemble des multiples

Soient P,Q ≃K[X ] deux polynômes non nuls. On a

(P |Q et Q|P ) ⇒ (⇑ω ≃K\ {0},Q =ωP )

On dit alors que P et Q sont des polynômes associés.
On a alors PK[X ] =QK[X ]

Théorème - Polynômes associés

Démonstration
Comme P |Q, il existe R tel que Q = RP . Donc deg(Q) = degR +
degP , et ainsi deg(P ) → deg(Q).

Puis de même deg(Q) → deg(P ). Donc degP = degQ.
On a donc degR = 0 et donc R =ω.

Exercice
Montrer qu’il s’agit d’une relation d’équivalence

Soient P,Q ≃K[X ], A ≃K[X ], A ⇐= 0. Soient ω,µ ≃K, (µ ⇐= 0). Alors

(A|P et A|Q) ⇒ (A|P et A|ωP +µQ)

En terme de multiple : P,Q ≃ AK[X ] ⇓⇔ P et (ωP +µQ) ≃ AK[X ].
On a plus largement encore pour P,Q,R ≃K[X ], A ≃K[X ], A ⇐= 0 et µ ≃K↗,

(A|P et A|Q) ⇒ (A|P et A|RP +µQ)

Théorème - Stabilité par combinaison linéaire

Démonstration
Supposons que A|P et A|Q.

P = AR1, Q = AR2, doncωP+µQ = A(ωR1+µR2) et A|ωP+µQ.
Evidemment, A|P .

Réciproquement si A|P et A|ωP +µQ,
alors P = AR1 et ωP +µQ = AR3, donc Q = 1

µ (µQ +ωP )↖ ω
µP =

A( 1
µR3 ↖ ω

µR1), donc A|Q.
On voit que seul l’inversibilité de µ joue un rôle.

Exercice
Soient A,B ≃R[X ].
Montrer que B divise A dans R[X ] si et seulement si B divise A dans C[X ].

Exercice
Soit P ≃K[X ]. Montrer que P (X )↖X divise P (P (X ))↖X .
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622 L’anneau euclidien des polynômes

2.2. Existence de la division euclidienne dansK[X ]

Soit (A,B) ≃ K[X ]2, B ⇐= 0. Alors il existe un unique couple (Q,R) ≃ K[X ]2

vérifiant :

A = BQ +R
degR < degB (⇒ R = 0 ou 0 → degR < degB)

On parle alors de division euclidienne (ou de division suivant les puis-
sances décroissantes) de A par B .

Théorème - Existence et unicité de la division euclidienne

Lorsqu’on calcule des DLn (0), on cherche
à écrire des puissances croissantes en x.
Par exemple lorsqu’on cherche le DL3(0) de
x4+2x2↖x+1

x3+x+1
.

Dans ce cas là, on peut poser la division exac-
tement à l’envers et obtenir :

(1↖x+2x2+x4) = (1+x+x3)(1↖2x+4x2↖5x3)

+8x4 ↖4x5 +5x6

Et donc

x4+2x2↖x+1

x3+x+1
= 1↖2x +4x2 ↖5x3 +O(x4)

Pour aller plus loin - Division selon les puis-
sances croissantes?

Démonstration

Soit B ≃K[X ], non nul. On note d = degB .
On commence par montrer l’existence du couple (Q,R), en rai-
sonnant par récurrence sur deg A.
On constatera que le résultat est vrai si deg A = ↖↙, i.e. A = 0 :
A = 0∝B +0.
Pour tout n ≃ N, Pn : « ′ A ≃ K[X ] avec deg A = n, ⇑ (Q,R) ≃
K[X ]∝Kd↖1[X ] tel que A = BQ +R »

— Si deg A = 0.
si d > 0, on prend Q = 0 et R = A.
si d = 0, on prend Q = A

B (B non nul) et R = 0
Dans tous les cas, P0 est vraie.

— Soit n ≃N. On suppose que P0, P1. . . Pn sont vraies.
Si deg A = n + 1 < d , on prend Q = 0 et R = A et Pn+1 est
vraie.
On suppose donc que n +1 ∞ d .

On considère A = an+1X n+1 + A∈, avec deg A∈ < n +1 et
an+1 ⇐= 0.

On suppose aussi que [B ]d = bd ⇐= 0. On note B =
bd X d +B ∈ avec degB ∈ < d .

Notons P = an+1
bd

X n+1↖d .

On a alors A ↖ PB = (an+1 ↖ an+1
bd

bd )X n+1 + (A∈ ↖
an+1

bd
X n+1↖d B ∈)

A↖PB = A∈ ↖ an+1
bd

X n+1↖d B ∈.

Or deg(A∈) → n, deg( an+1
bd

X n+1↖d B ∈) = n + 1 ↖ d +
deg(B ∈) < n +1.

deg(A ↖PB) → n. On appliquer l’une des hypothèses
de récurrence à ce A↖PB .

Donc il existe Q1,R ≃ K[X ] avec degR < d , tel que
A↖PB =Q1B +R, donc A = (Q1 +P )B +R.

et ainsi avec Q = Q1 +P , l’hypothèse Pn+1 est véri-
fiée.

Reste à montrer l’unicité.
Si A =Q1B +R1 =Q2B +R2, alors (Q1 ↖Q2)B = R2 ↖R1.

Or deg((Q1 ↖Q2)B) = deg(Q1 ↖Q2)+degB ∞ degB , si Q1 ⇐=
Q2.

Alors que deg(R2 ↖R1) < degB .
La seule possibilité : Q1↖Q2 = 0, donc Q1 =Q2, puis R2↖R1 = 0

donc R1 = R2.
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2. Division euclidienne dansK[X ] 623
STOP Remarque - Nécessité d’un corpsK
Le rôle du corps est assuré par l’existence de b↖1

d . Il faut donc au moins que
bd soit inversible (et par récurrence. . .) pour faire une division euclidienne de
A par B .
Cette démonstration nous conduit au savoir-faire :

On remarque que cette démonstration (en tout cas la partie concernant
l’existence) donne un algorithme pour obtenir Q puis R.

1. On divise le terme de plus haut degré de A par celui de B
C’est possible car K est un corps, cela donne un facteur du type
adeg(A)

bdeg(B)
X deg(A)↖deg(B).

On peut, par habitude, noter ce nombre sous B (dans un tableau
A|B)

2. Puis on soustrait à A, toute la multiplication de B par ce facteur.
On peut, par habitude, écrire cette multiplication sous A, ce qui
permet de faire la soustraction aisément

3. On obtient un nouveau terme A1

4. et on recommence la division, jusqu’à ce que deg An < degB . On
a alors R = An
Cela se termine bien car la suite (deg(Ak )) est une suite entière
strictement décroissante

Savoir faire - Algorithme de division euclidienne

Il existe un algorithme, plus ou moins efficace
selon l’habitude qu’on en a, pour faire la divi-
sion euclidienne de deux polynômes.
Voir wikipedia ou le DS 6 de 2016-2017

Pour aller plus loin - Méthode de Hörner-
Ruffini

Exercice
Effectuer la division euclidienne de A = X 5 +2X 4 +3X 2 +X +4 par B = X 2 +2X +2.

On l’équivalence :
B |A ⇓⇔ R = 0

où R est le reste de la division euclidienne de A par B .

Proposition - Divisibilité et division euclidienne

Démonstration
Si R = 0, alors A = BQ et donc B |A.
Réciproquement, par unicité de la division euclidienne, on peut
identifier dans A = BQ +0, le quotient à Q et le reste à 0.

2.3. Nature deK[X ]

Finalement,

On suppose queK est un corps.
L’ensemble des multiples de P est un idéal principal deK[X ].
K[X ] est un anneau principal.

Proposition - Structure deK[X ]

Exercice
A demontrer

On notera également :

Soit P,Q,T ≃K[X ].
On dit que P est congru à Q modulo T , noté P ↘Q[T ]

Définition - Congruence
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624 L’anneau euclidien des polynômes

si P ↖Q est un multiple de T i.e. P ↖Q ≃ TK[X ]
ou encore P =Q +K ∝T avec K ≃K[X ].

Exercice
Montrer que P ↘Q[T ] ⇓⇔ P%T =Q%T .

3. Plus Grand Commun Diviseur

3.1. Heuristique

On note momentanément D(A) l’ensemble des diviseurs de A ≃ K[X ].

Soient A et B deux éléments de K[X ] non nuls. D(A) ∋ D(B) est une partie non vide
(contient 1) de K[X ] dont les éléments sont de degré → max(deg A,degB) donc {degP ;P ≃
D(A)∋D(B)}(△N) admet un plus grand élément d .
Tout élément de D(A) ∋ D(B) de degré d est appelé un PGC D (Plus Grand Commun
Diviseur) de A et B .
On parlera parfois de « le » PGCD de A et de B , pour désigner le polynôme unitaire de
D(A)∋D(B) de degré d . Les autres PGCD lui sont associés.

Heuristique - PGCD

Ce n’est pas la définition que nous choisirons. Nous reprendrons la caracté-
ristique, plus pratique, vue en arithmétique entière.

3.2. Algorithme d’Euclide et coefficients de Bézout

Soit (A,B) ≃K[X ]2. Si A = BQ +R, alors D(A)∋D(B) =D(B)∋D(R).
Lemme - Stabilité des diviseurs et algorithme d’Euclide

Un autre exemple d’anneau euclidien (muni
d’une division euclidienne) :Z[i ], l’anneau des
entiers de Gauss.

Pour aller plus loin - Anneau euclidien Démonstration
On a vu : P |A et P |B ssi P |B et P |A+B , on exploite ce résultat.
Soit P ≃D(A)∋D(B).

P divise B , donc P ≃D(B).
Puis A = PA1, B = PB1, donc R = A↖BQ = P (A1 ↖B1Q),

donc P divise R et P ≃D(R).
Ainsi P ≃D(B)∋D(R).

Réciproquement, si P ≃D(B)∋D(R).
P divise B , donc P ≃D(B).
Puis R = PR1, B = PB1, donc A = BQ +R = P (B1Q +R1),

donc P divise A et P ≃D(A).
Ainsi P ≃D(A)∋D(B).

On pratique l’algorithme d’Euclide pour les polynômes A et B .
— On commence par poser R0 = A et R1 = B ;
— ensuite, k désignant un entier naturel non nul, tant que Rk+1 ⇐= 0,

on note Rk+2 le reste de la division euclidienne de Rk par Rk+1 (on a
donc degRk+2 < degRk+1).

Comme il n’existe qu’un nombre fini d’entiers naturels entre 0 et degR0, il
existe N ≃N↗ tel que RN = 0.
D(RN↖1) =D(A)∋D(B).

Définition - Algorithme d’Euclide
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3. Plus Grand Commun Diviseur 625

Démonstration

Il existe N ≃N↗ tel que RN = 0.
RN↖1 est alors le dernier reste non nul et on a donc :

D(A)∋D(B) =D(R0)∋D(R1) =D(R1)∋D(R2) = ·· · =D(RN↖1)∋D(RN ) =D(RN↖1)∋D(0) =D(RN↖1)

Analyse - Suites (Un) et (Vn)

Avec les mêmes notations, on considère les deux suites de poly-
nômes (Un) et (Vn) définies par la même relation de récurrence :

′ n ≃N, Un+2 =Un ↖Qn+1Un+1,Vn+2 =Vn ↖Qn+1Vn+1

avec pour conditions initiales : U0 = 1, U1 = 0 et V0 = 0, V1 = 1.
On a donc R0 = A = 1A +0B =U0 A +V0B et R1 = B = 0A +1B =
U1 A+V1B .
Puis pour tout n ≃N :

Rn+2 = Rn ↖Qn+1Rn+1 = (Un A+VnB)↖Qn+1(Un+1 A+Vn+1B)
= (Un ↖Qn+1Un+1)A+ (Vn ↖Qn+1Vn+1)B

Donc par récurrence, on peut affirmer

A partir de l’algorithme d’Euclide, en considérant les suites (Un) et (Vn)
définies par U0 = 1, U1 = 0 et V0 = 0, V1 = 1 et

′ n ≃N, Un+2 =Un ↖Qn+1Un+1,Vn+2 =Vn ↖Qn+1Vn+1

On a
′ n ≃N, Rn =Un A+VnB

En particulier, il existe U ,V ≃K[X ] tel que RN↖1 =U A+V B

Théorème - Couple de Bézout

Avec les mêmes notations, on a finalement les deux suites de polynômes
(Un) et (Vn) définies par la même relation de récurrence :

′ n ≃N, Un+2 =Un ↖Qn+1Un+1,Vn+2 =Vn ↖Qn+1Vn+1

avec pour conditions initiales : U0 = 1, U1 = 0 et V0 = 0, V1 = 1.
Comme pour le cours d’arithmétique de Z, on peut faire le calcul au fur
et à mesure dans un tableau.
Alors, pour tout n ≃N, Rn =Un ∝ A+Vn ∝B

Truc & Astuce pour le calcul - Suites (Un) et (Vn)

Exercice
Pour tout n ≃NN↖1 que vaut UnVn+1 ↖VnUn+1 ?

3.3. PGCD

Soit (A,B) ≃ K[X ]2, A,B non nuls. Il existe un polynôme D dont les divi-
seurs sont exactement les diviseurs communs à A et B , c’est-à-dire tel que

′P ≃K[X ], (P |A et P |B) ⇓⇔ P |D.

D est un PGC D de A et B et deux polynômes D1 et D2 vérifiant ces

Définition - PGCD et couple de Bézout
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626 L’anneau euclidien des polynômes

hypothèses sont associés.
L’unique polynôme D unitaire vérifiant ces hypothèses est noté A ↑B (on
dit aussi que c’est le PGCD de A et B).

STOP Remarque - Relation d’équivalence
R : ARB ssi A et B sont PGCD de deux polynômes identiques.
En fait, il s’agit d’une relation d’équivalence, la même que : R∈ : AR∈B ssi
⇑ ω ≃K tel que A =ωB .
Les classes d’équivalences ont toutes un représentant naturel : un polynôme
unitaire.
Avec cette définition, il faut montrer l’existence. La proposition suivante nous
donne un exemple.

Le dernier reste non nul obtenu avec l’algorithme d’Euclide est un PGCD
de A et B .

Proposition - Un PGCD

Démonstration
On a vu que RN↖1 est un diviseur de A et B .

Donc si P |RN↖1, alors P |A et P |B .
Et si P |A et P |B , alors P |U A+BV = RN↖1.
On a donc l’équivalence caractéristique et RN↖1 est un PGCD de
A et B .

Comme A↑B =ωRN↖1 :

Il existe des polynômes U et V tels que AU +BV = A↑B .
(U ,V ) est un couple de Bézout de A et B .

Corollaire - Couple de Bézout

D est un PGCD de A et B si et seulement si

AK[X ]+BK[X ] = DK[X ]

Corollaire - Autre expression du PGCD

Démonstration
Si D est un PGCD, alors D =ωRN↖1.

Si P ≃ AK[X ]+BK[X ], alors ⇑ W, Z ≃K[X ] tel que P = W A +
Z B .

Et donc P = RN↖1(W A∈ + Z B ∈) avec A = A∈RN↖1 et B =
B ∈RN↖1

Et ainsi P = D
( 1
ω (W A∈+Z B ∈)

)
, donc P ≃ DK[X ]

AK[X ]+BK[X ] △ DK[X ].
Et si P ≃ DK[X ] = RN↖1K[X ], alors P = (U A +V B)R =U R A +

V RB .
Et ainsi DK[X ] △ AK[X ]+BK[X ].

Réciproquement supposons que AK[X ]+BK[X ] = DK[X ].
On a alors D ≃ AK[X ]+BK[X ], donc il existe W, Z tels que

D =W A+Z B .
Et donc si P |A et P |B , alors P |W A+Z B = D .

On a également 1A+0B ≃ DK[X ] et donc D|A.
Et si P |D , alors P |A par transitivité et de même P |B .

STOP Remarque - Elargissement de la définition
On élargit :
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3. Plus Grand Commun Diviseur 627

— On pose A↑0 = A
— Il n’y a pas unicité du couple (U ,V ) puisque si (U0,V0) est un couple de

Bezout, alors pour tout Q ≃K[X ], (U0 +QB ,V0 ↖Q A) en est aussi un.
— En pratique, comme avec les entiers, on trouve (U ,V ) en utilisant

l’algorithme d’Euclide et en éliminant les restes successifs.
Exercice
Déterminer PGC D(A,B) ainsi qu’un couple de Bezout lorsque A = X 3 + X 2 + 2 et
B = X 2 +1.

Le théorème énonce beaucoup de choses, à démontrer. . .

A et B sont dits premiers entre eux si A↑B = 1.
Définition - Polynômes premiers entre eux

Soient A et B deux polynômes non nuls. Alors

A↑B = 1 ⇓⇔⇑(U ,V ) ≃K[X ]2 tel que AU +BV = 1.

Théorème - Théorème de Bezout

Démonstration
D’après ce qui précède, si A↑B = 1 alors ⇑(U ,V ) ≃K[X ]2 tel que AU+
BV = 1
Réciproquement si AU+BV = 1 alors pour D ≃K[X ], D|A et D|B ⇔
D|AU +BV = 1 donc D ≃K et A↑B = 1.

Exercice
Sans effectuer la division euclidienne, trouver un couple de Bézout pour les polynômes
(1↖X )5 et (1+X )4.

3.4. Lemme de Gauss et facteurs relativement premiers

Soient A,B ,C trois polynômes deK[X ]. Alors

(A↑B = 1 et A|BC ) ⇔ A|C .

Théorème - Lemme de Gauss

Démonstration
Si A ↑ B = 1 alors ⇑(U ,V ) ≃ K[X ]2 tel que AU + BV = 1 d’où
ACU +BCV =C et A|BC ⇔ A|BCV ⇔ A|C ↖ ACU .
Or A|ACU d’où A|C = (C ↖ ACU )+ ACU .

Soient A,B ,C trois polynômes deK[X ]. Alors

(A↑B = 1 et A↑C = 1) ⇔ A↑BC = 1 (réciproque vraie)

(A↑B = 1, A|C , B |C ) ⇔ AB |C

Proposition - Facteurs relativement premiers
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Démonstration
D’après l’identité de Bézout il existe U1,V1,U2,V2 tels que AU1 +
BV1 = 1 et AU2 +CV2 = 1,

d’où par produit A(U1(AU2+CV2))+ A(BU2V1)+BCV1V2 = 1,
ce qui peut s’écrire AU +BCV = 1 avec (U ,V ) ≃K[X ]2, et par

Bézout A↑BC = 1.
Pour la seconde implication : A|C donc C = AQ ; B |C = AQ et
B ↑ A = 1 donc B |Q ;
Q = BP et C = ABP d’où AB |C .

Soient A,B deux polynômes non constants, premiers entre eux.
Alors il existe un unique couple (U0,V0) tel que AU0+BV0 = 1 avec degU0 <
degB , degV0 < deg A.
On a alors U =U0 +QB et V =V0 ↖Q A avec Q ≃K[X ]

Corollaire - Bézout avec degré minimal

Il existe un objet : le résultant de deux po-
lynômes qui permet de calculer directement
(avec un déterminant matriciel) si ces deux po-
lynômes ont un facteur commun. Bien exploi-
ter, on peut aussi en déduire une décomposi-
tion de Bézout.

Pour aller plus loin - Résultant
Démonstration
Supposons que AU +BV = 1.
Pour tout Q ≃K[X ], A(U ↖BQ)+B(V + AQ) = AU ↖ ABQ +BV +
ABQ = 1.
Prenons donc U0, reste de la division euclidienne de U par B . On
a donc degU0 < degB .
Avec Q, la quotient de la division euclidienne : U =QB+U0, donc
U0 =U ↖QB .
Notons alors V0 = V + AQ, on a donc AU0 +BV0 = 1, degU0 <
degB .

Donc deg(AU0) < deg A +degB , et donc deg(BV0) < degB +
deg A, ce qui nécessite : degV0 < deg A.

Par récurrence de la proposition : produit des polynômes premiers entre eux :

Soient A,C ,B1, . . . ,Bn des polynômes.

(′i ≃ [[1,n]], A↑Bi = 1) ⇔ A↑
n∏

i=1
Bi = 1

(′(i , j ) ≃ [[1,n]]2, i ⇐= j ⇔ Bi ↑B j = 1 et ′i ≃ [[1,n]],Bi |C ) ⇔
n∏

i=1
Bi

∣∣∣C

Corollaire - Facteurs premiers

3.5. Interprétation avec racines

Soit P ≃ K[X ]. Si x1, . . . , xp sont p racines distinctes de P de multiplicités

respectives égales à m1, . . . ,mp , alors
p∏

i=1
(X ↖xi )mi divise P .

Proposition - Factorisation (division)

Démonstration
Les polynômes (X ↖xi )mi sont premiers entre eux deux à deux.
En effet, si T |(X ↖xi )mi , alors T = (X ↖xi )ni avec ni → mi .

Et donc si T |(X ↖xi )mi et T |(X ↖x j )m j , alors T = 1.
Enfin, d’après le corollaire précédent : comme pour tout i (X ↖

xi )mi |P , alors
p∏

i=1
(X ↖xi )mi divise P .
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Un polynôme non nul de degré n possède au plus n racines comptées avec
leur multiplicité (c’est-à-dire comptées autant de fois que leur multipli-
cité).

Corollaire - Nombre maximal de racines

Démonstration

On a nécessairement : deg

(
p∏

i=1
(X ↖xi )mi

)
=

p∑

i=1
mi → deg(P ) = n.

Exercice
Trouver les polynômes P ≃R7[X ] tels que (X +7)P (X ) = (X ↖5)∝P (X +2)

3.6. PGCD de plusieurs polynômes

La notion de PGCD peut être étendue à un nombre fini de polynômes :

Soient k ≃ N↗, k ∞ 2, et (A1, A2, . . . , Ak ) ≃ K[X ]k . Il existe un unique poly-
nôme nul ou unitaire P dont les diviseurs sont exactement les diviseurs
communs à tous les Ai , c’est-à-dire tel que

′T ≃K[X ], (′i ≃ [[1,k]], T |Ai ) ⇒ T |P

En fait, on a D(P ) =
k⋂

i=1
D(Ai ).

On l’appelle PGCD de A1, A2, . . . , Ak et on le note A1 ↑ A2 ↑ . . . ↑ Ak ou∧k
i=1 Ai .

On a de plus l’identité de Bézout :

⇑(U1, . . . ,Uk ) ≃K[X ]k |P =
k∑

i=1
Ui Ai .

Encore : A1K[X ]+ A2K[X ]+·· ·+ AkK[X ] est l’idéal engendré PK[X ].

Proposition - PGCD de plusieurs polynômes

Démonstration

On note A = {
k∑

i=1
Ui Ai ,Ui ≃ K[X ]}. Donc pour tout i ≃ Nk , Ai ≃

A .
On note DA = {degP,P ≃A ,P ⇐= 0}.

deg(A1) ≃DA , donc DA est non vide, inclus dansN.
Il admet un plus petit élément d et il existe P ≃ A tel que

d = degP .
Quitte à le diviser par son coefficient dominant, on peut sup-

poser que P est unitaire. On va démontrer que A = PK[X ].
On a P ≃A , puis clairement PK[X ] △A (qui est un idéal).
Réciproquement, soit B ≃A .

On pratique la division euclidienne de B par P : B =QP+R,
donc R = B ↖QP ≃A .

Or degR < degP , donc nécessairement R = 0, sinon on au-

rait une contradiction. Et P divise B . Ainsi, A = {
k∑

i=1
Ui Ai ,Ui ≃

K[X ]} = PK[X ].

Il est donc clair qu’il existe U1, . . .Uk tels que P =
k∑

i=1
Ui Ai .
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Montrons que P vérifie la propriété de divisibilité.

Si, pour tout i ≃Nk , T |Ai , alors T |
k∑

i=1
Ui Ai = P .

Réciproquement, comme Ai ≃ A , P |Ai et par transitivité :
T |P |Ai .
Enfin, montrons l’unicité de P .

Si P1 vérifie la même propriété alors, comme P |P , P |Ai pour
tout i ; et donc P |P1.

Et de même P1|P . Donc P et P1 sont associés.
Tous les deux sont unitaires, donc P = P1.

La proposition suivante permet de justifier la notation associative
∧k

i=1 Ai

Soient k ≃N↗, k ∞ 2, et (A1, A2, . . . , Ak ) ≃K[X ]k .∧k
i=1 Ai =

(∧k↖1
i=1 Ai

)
↑ Ak

Proposition - PGCD par récurrence

Démonstration

Comme pour les entiers, nous faisons une récurrence sur k.
Notons, pour tout k ≃N↗, k ∞ 2 :

Pk : « Pour (A1, A2, . . . , Ak ) ≃ (K[X ])k , ⇑ (U1, . . . ,Uk ) ≃ (K[X ])k | ∧k
i=1 Ai =∑k

i=1Ui Ai . »
— P2 est vraie. C’est le théorème de Bézout vu plus haut.
— Soit k ≃N, k ∞ 2. Supposons que Pk est vraie.

Soient (A1, A2, . . . , Ak , Ak+1) ≃Zk .
Notons ω1 =

∧k
i=1 Ai et ω=∧k+1

i=1 Ai .
On a les équivalence, pour tout entier P ≃K[X ] :

P |ω1 et P |Ak+1 ⇓⇔′ i ≃ [[1,k +1]]P |Ai ⇓⇔ P |ω

Donc ω=ω1 ↑ Ak+1 (et existe bien. . .).
D’après l’identité de Bézout, il existe U ,V ≃ K[X ] tel que
ω=Uω1 +V Ak+1.
Puis on applique Pk , à (A1, A2, . . . , Ak ) : ω1 = U1 A1 + ·· · +
Uk Ak .

Finalement ω =
k+1∑
i=1

U ∈
i Ai , avec U ∈

k+1 = V et U ∈
j = U j ∝U

pour j → k.
Donc Pn+1 est vraie.

Notons qu’on aurait pu commencer à k = 1, mais le résultat
obtenu n’a pas d’intérêt

Les polynômes A1, . . . , Ak sont dits premiers entre eux dans leur ensemble
si leur PGCD vaut 1.

Définition - Polynômes premiers entre eux (dans leur ensemble)

Une famille de polynômes premiers entre eux deux à deux est une famille
de polynômes premiers entre eux dans leur ensemble.
La réciproque est fausse.
On peut le démontrer avec une décomposition de Bézout

Attention - Polynômes premiers entre eux
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Soient A1, . . . , Ak des polynômes. Alors

k∧

i=1
Ai = 1 ⇒⇑(U1, . . . ,Uk ) ≃K[X ]k |

k∑

i=1
Ui Ai = 1

Proposition - Théorème de Bézout

Démonstration
Cela découle de la proposition précédente.

Si
∧k

i=1 Ai = 1, alors il existe (U1, . . . ,Uk ) ≃K[X ]k | ∑k
i=1Ui Ai =

1.

Réciproquement, si il existe (U1, . . . ,Uk ) ≃K[X ]k |
k∑

i=1
Ui Ai = 1

Alors siω=∧k
i=1 Ai , il divise Ai , pour tout i et donc

k∑

i=1
Ui Ai =

1.
Donc ω= 1

4. Plus Petit Commun Multiple

4.1. Caractérisation essentielle

On devrait parler d’UN PPCM si il s’agit d’un
polynôme associé à LE PPCM

Pour aller plus loin - UN/LE PPCMSoient A et B deux polynômes non nuls.
L’ensemble des multiples communs à A et B est non vide (contient AB) donc l’ensemble
des degrés des multiples communs à A et B et non nul, est une partie non vide de N donc
admet un plus petit élément.
Un multiple de A et B de plus petit degré est appelé un PPC M (Plus Petit Commun
Multiple) de A et B .

Heuristique - PPCM

Soit (A,B) ≃ K[X ]2. Il existe un unique polynôme M nul ou unitaire dont
les multiples sont exactement les multiples communs à A et B , c’est-à-dire
tel que

′P ≃K[X ], (A|P et B |P ) ⇒ M |P

M est appelé le PPC M de A et B , noté A▽B .

Définition - Caractérisation essentielle du PPCM

Démonstration
Soit M , un PPCM de A et de B . Donc A = M A1, B = MB1.
Alors si P est tel que A|P et B |P on a P multiple commun à A et
B , donc deg(P ) ∞ deg(M).
Faisons la division euclidienne de P par M : P = MQ +R avec
deg(R) < deg(M).
Or A|P , A|MQ, donc A|R = P ↖MQ et de même B |R.
Donc R est un multiple de A et de B , mais son degré est plus pe-
tit que celui de M .

Par définition de M cela impose R = 0 et donc M divise P .
Donc les PPCM vérifie la condition : ′P ≃K[X ], (A|P et B |P ) ⇒
M |P .

Il existe donc bien (au moins) un polynôme qui vérifie la
condition.
Supposons qu’il en existe un second : M1.
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Alors comme A|M et B |M , on a donc M1|M . Et réciproque-
ment (vu plus haut).

Ainsi, M et M1 sont associés, et il existe un unique polynôme
unitaire vérifiant la condition.

Une autre caractérisation essentielle

M est un PPCM de A et B si et seulement si

AK[X ]∋BK[X ] = MK[X ]

Corollaire - Autre caractérisation

Démonstration
P ≃ AK[X ]∋BK[X ] ⇓⇔ A|P et B |P .
P ≃ MK[X ] ⇓⇔ M |P Donc[

A|P et B |P ⇒ M |P
]
⇓⇔

[
P ≃ AK[X ]∋BK[X ] ⇒ P ≃ MK[X ]

]

4.2. Relation PGCD/PPCM

Soient A,B ≃K[X ] non nuls.
— si A↑B = 1 alors ⇑ω ≃K↗ | AB =ω(A▽B).
— dans le cas général, ⇑ω ≃K↗ | AB =ω(A↑B)∝ (A▽B).

Proposition - Relation PGCD et PPCM

Quel est le lien entre cette formule est la sui-
vante?
cardA+cardB = card(A̸B)+card(A∋B).

Pour aller plus loin - Un lien avec les en-
sembles

Démonstration

Soit P tel que A|P et B |P .
Comme A↑B = 1, d’après un corollaire de Gauss : AB |P .

Réciproquement, si AB |P , alors A|P et B |P .
Donc AB est un PPCM de A et B .
Ainsi A▽B et AB sont associés.
Dans le cas général : A = (A↑B)A∈ et B = (A↑B)B ∈

on applique à A∈ et B ∈, le résultat précédent :
il existe ω tel que A∈B ∈ =ω(A∈ ▽B ∈).
On multiplie par (A↑B)2 :

AB = (A↑B)A∈(A↑B)B ∈ =ω(A↑B)2(A∈ ▽B ∈)

=ω(A↑B)∝ [(A↑B)A∈]▽ [(A↑B)B ∈]) =ω(A↑B)(A▽B)

On a exploité (Q A)▽ (QB) =Q(A▽B).
En effet : A|P et B |P ssi Q A|QP et QB |QP

On peut retenir que si A = (A↑B)A∈, et B = (A↑B)B ∈,
alors A∈ et B ∈ sont premiers entre eux,
et alors ωA▽B = (A↑B)A∈B ∈.
Et donc : A∝B = (A↑B)A∈ ∝ (A↑B)B ∈ = (A↑B)∝ (A↑B)A∈B ∈ =ω(A↑B)∝ (A▽B)

Heuristique - Décomposition

Exercice
Déterminer le PGCD, le PPCM et un couple de Bezout lorsque A = X 3 +3X 2 +3X +2 et
B = X 5 +3X 4 +2X 3 ↖2X 2 ↖3X +2.
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5. Polynômes irréductibles

5.1. Décomposition unique en produit d’irréductibles

Les polynômes irréductibles jouent ici le même rôle que les nombres pre-
miers dans Z. Les polynômes inversibles sont les polynômes de degré 0 :

P ≃K[X ] est dit irréductible si

(P = AB , A,B ≃K[X ]) ⇔ deg A = 0 ou degB = 0

Définition - Polynômes irréductibles

Quel que soit le corpsK et ε ≃K, le polynôme X ↖ε est irréductible surK.
Proposition - Polynôme (de degré 1) irréductible

On dit que p est premier s’il n’est divisible que
par 1 et lui-même.
Ici, cette définition ne colle pas bien.
En fait, on a p est premier si p = ab ⇔ a ou
b ≃ {↖1,1}.
Et plus généralement : p est premier si p =
ab ⇔ a ou b inversible

Pour aller plus loin - Polynômes premiersDémonstration
Si P = AB de degré 1, alors deg(A)+degB = 1 et donc au moins
l’un est constant

Un polynôme irréductible est premier avec tous les polynômes qu’il ne
divise pas.
Un polynôme irréductible divise un produit si et seulement si il divise l’un
des facteurs.

Proposition - Polynômes irréductibles et polynômes premiers entre
eux

Démonstration

Soit P un polynôme irréductible.
Soit A un autre polynôme. Notons ω= P ↑ A.
Alors P =ωP ∈, et donc :

— degω= 0 et A et P sont premiers
— ou degP ∈ = 0 et donc degω= degP et donc ω=ωP .

Dans ce cas P |A.
Soit P un polynôme irréductible. Supposons que P |P1 ∝P2.
Notons A = P↑P1, on a donc P = AP ∈ et P1 = AP ∈

1 avec P ∈↑P ∈
1 = 1.

Et donc AP ∈|AP ∈
1P2 et ainsi P ∈|P ∈

1P2.
Et alors, d’après le lemme de Gauss : P ∈|P2, car P ∈ ↑P ∈

1 = 1.
On a donc P = AP ∈, avec A|P1 et P ∈|P2. Mais P est irréductible,
donc

— deg A = 0 et P ∈ est associé à P et donc P divise P2
— ou degP ∈ = 0 et A est associé à P et donc P divise P1

Tout polynôme non constant deK[X ] est le produit d’un scalaire (élément
deK) par un produit de polynômes irréductibles unitaires deK[X ].
Cette décomposition est unique à l’ordre des facteurs près.

Théorème - Décomposition en produit de facteurs polynomiaux irré-
ductibles
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Démonstration

On démontre d’abord l’existence (récurrence) de la décomposi-
tion puis son unicité.

— Posons, pour tout n ≃ N↗, Hn :« tout polynôme de degré
inférieur à n admet une telle décomposition. »
— H1 est vraie car (X ↖a) est irréductible.
— supposons Hn vraie pour un certain n ≃N↗.

Soit P un polynôme de degré n +1.
— Si P est irréductible, il suffit de diviser par son coeffi-

cient dominant
— Si P n’est pas irréductible, il existe A et B de degré

supérieur ou égal à 1 (chacun),
tels que P = A ∝B . Donc deg A → n + 1↖ 1 = n et

degB → n +1↖1 = n.
Et on applique Hn à A et à B .

La récurrence est démontre, l’existence est assurée.
— Si

P =
r∏

i=1
Pεi

i =
s∏

j=1
Q
ϑ j

j

, chacun des Pi et Q j est irréductible. Alors pour tout i Pi |P
d’où il existe j tel que Pi |Q j (Pi irréductible) soit Pi = Q j
(Q j irréductible),

donc en fait on a les mêmes nombres premiers dans les
deux décompositions.
Reste à prouver que les puissances sont les mêmes.
Supposons pour un i que l’on ait alors εi > ϑi , en simpli-
fiant par Pϑi

i on a

Pεi↖ϑi
i

∏

k ⇐=i
Pεk

k =
∏

k ⇐=i
Pϑk

k

d’où Pi |
∏

k ⇐=i
Pϑk

k ce qui est absurde car Pi irreductible et

Pi ↑Pk = 1 pour k ⇐= i . D’où εi =ϑi .

Soient A,B ≃K[X ] non nuls. Si

A =ωPε1
1 Pε2

2 . . .Pεk
k et B =µPϑ1

1 Pϑ2
2 . . .Pϑk

k

où les Pi sont irréductibles unitaires distincts deux à deux, εi ,ϑi ≃ N
(éventuellement nuls), alors

A|B ⇒′i ≃ [[1,k]], εi →ϑi

A↑B =
k∏

i=1
P min(εi ,ϑi )

i

A▽B =
k∏

i=1
P max(εi ,ϑi )

i

Proposition - Critère de divisibilité par polynômes irréductibles
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Démonstration
Si A divise B , alors Pεi

i divise B et donc εi →ϑi .

La réciproque est trivial, avec C = Pϑ1↖ε1
1 Pϑ2↖ε2

2 . . .Pϑk↖εk
k , on

a A∝C = B Supposons que D|A, et D|B ,
alors D = Pϖ1

1 Pϖ2
2 . . .Pϖk

k , avec ϖk →εk .
de même ϖk →ϑk . Donc ϖk → min(εk ,ϑk ).
C’est le cas pour D = a ↑b.

Par ailleurs :
∏k

i=1 P min(εi ,ϑi )
i divise A et B , donc divise a ↑b.

On peut donc assimiler : A ↑ B = ∏k
i=1 P min(εi ,ϑi )

i La dé-
monstration pour le PPCM est laissé en exercice.
On peut exploiter A ↑ B ∝ A ▽ B = A ∝ B et min(εi ,ϑi ) +
max(εi ,ϑi ) =εi +ϑi

5.2. Décomposition dans C[X ]

Rappel :

Soit P ≃C[X ], degP ∞ 1. Alors P possède au moins une racine dans C.
Théorème - Théorème de d’Alembert-Gauss

Les polynômes irréductibles de C[X ] sont les polynômes de degré 1.
Corollaire - Décomposition dans C

Démonstration
Soit P irréductibles de C de degré supérieur à 1.
Il admet au moins une racine ε et est donc divisible par X ↖ε.
Et donc P = (X ↖ε)Q, or P est irreducible, donc degQ = 0.
Et finalement, P est de degré 1.

Tout polynôme non nul P deC[X ] se décompose de manière unique (à une
permutation près) sous la forme

P =ω
p∏

i=1
(X ↖xi )mi

où les xi ≃C sont distincts et
p∑

i=1
mi = degP .

Tout polynôme non nul de C[X ] est donc scindé sur C (C est dit
algébriquement clos).

Théorème - C est algébriquement clos

Démonstration
On applique le théorème de décomposition en produit de fac-
teurs polynomiaux irréductibles,
et ici (sur C) les facteurs irréductibles sont de degré 1, ce qui
donne le théorème.

Sur C[X ], les polynômes irréductibles sont de degré 1.
Donc décomposer un polynôme P sur C[X ] en produit d’irréductibles
est équivalent à chercher toutes les racines de P , en tenant compte de
leur ordre de multiplicité.
En règle générale, on choisit, les facteurs, unitaires et on multiplie le

Savoir faire - Décomposition en produit d’irréductibles de C[X ]
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produit par ω, le coefficient dominant de P .

En appliquant le critère de divisibilité par des irréductibles :

Soient P,Q ≃ C[X ]. Alors P |Q dans C[X ] si et seulement si les racines de P
sont des racines de Q avec une multiplicité inférieure dans P .

Corollaire - Critère de divisibilité dans C

Exercice
Démontrer à nouveau que P (X )↖X divise P (P (X ))↖X .
On commencera par faire l’étude dans C, puis dans K.

5.3. Décomposition dans R[X ]

Comme R[X ] △ C[X ], on sait qu’un polynôme P de R[X ] tel que degP ∞ 1
admet dans C degP racines comptées avec leur multiplicité.

Si z0 ≃C est racine de multiplicité m de P ≃R[X ],
alors il en est de même de z0.

Proposition - Conjugaison des racines

Démonstration
Soit z0 une racine de P d’ordre m.
Alors P = (X ↖ z0)mQ.
Et donc P = (X ↖ z0)mQ = (X ↖ z0)mQ.
Donc z0 est une racine d’ordre au moins m.
Si elle est d’ordre n > m, on a de la même façon, z0 est d’ordre
au moins n,

ce qui est faux, donc n = m.

Soit P ≃R[X ] tel que degP soit impair. Alors P a au moins une racine dans
R.

Proposition - Si degP est impair

Démonstration
On peut exploiter le TVI. . ., mais ce n’est pas l’esprit ici.
Faisons un raisonnement par l’absurde. Cela signifie que P n’ad-
met que des racines complexes.
Donc pour toute racine z de P , on a Im(z) ⇐= 0. Notons zi et ni
ces racines et leur ordre.
Notons N =∑

i |Im(zi )>0 ni . Alors degP = 2N , ce qui est faux.
Donc P admet une racine réelle.

Les polynômes irréductibles dans R[X ] sont
— les polynômes de degré 1,
— les polynômes de degré 2 à discriminant strictement négatif.

Proposition - Description des irréductibles de R[X ]
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Démonstration
Si z est une racine de P ≃R[X ], alors z également.
Donc (X ↖ z)(X ↖ z) = X 2 ↖2Re(z)+|z|2 divise P .
Or il s’agit d’un polynôme à coefficient réel.
Donc tout polynôme réel P de degré supérieur strictement à 2
est divisible par un polynôme non constant de degré 1 (racine
réelle) ou de degré 2 (racine complexes) (ou les deux!).
Evidemment, les polynômes de degré 1 sont irréductibles.
Enfin, parmi les polynômes de degré 2, sont irréductibles ceux
n’admettant pas de racines réelles, donc tels que ω< 0.

Tout polynôme non nul de R[X ] se factorise de manière unique (à une
permutation près) sous la forme

P =ω
∏

i
(X ↖εi )mi

∏

j
(X 2 +b j X + c j )p j

où les εi ,b j ,c j sont des réels, mi , p j des entiers tels que

∑

i
mi +2

∑

j
p j = degP, et b2

j ↖4c j < 0.

Théorème - Factorisation dans R[X ]

Démonstration
On applique le théorème de factorisation par des irréductibles.
Ici les irréductibles de R[X ] sont décrits par la proposition pré-
cédente.

Si la factorisation n’est pas évidente, on peut exploiter le savoir-faire suivant :

On décompose P sur C[X ].
Si ε est racine d’ordre m, alors ε également.
Le polynôme (X 2↖2Re(ε)X +|ε|2)m divise P et est irréductible sur R[X ].

Savoir faire - Décomposition en produit d’irréductibles de R[X ]

Exercice
Décomposer 2X 4 +2 dans C[X ] et dans R[X ].

Exercice
Décomposer dans R[X ] le polynôme X 2n ↖1.
Que vaut le produit des racines 2n-ièmes de l’unité?

Exercice
Soit z0, . . . , zn↖1 les racines n-ièmes de l’unité. Montrer que

n↖1∏

k=0
(z2

k ↖2zk cosϱ+1) = 4sin2(
nϱ

2
).

6. Bilan

Synthèse

↭ K[X ], comme Z est muni d’une division euclidienne.
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↭ On définit alors l’algorithme d’Euclide pour deux polynômes. Il
conduit à la notion de PGCD de ces deux polynômes. Toute la struc-
ture est transportée de Z à K[X ] : PGCD, couple de Bézout, lemme de
Gauss, PPCM, généralisations. . . Les méthodes sont identiques.
On peut exploiter en outre : les racines, la dérivations et le changement
d’origine !

↭ Les nombres premiers deviennent les polynômes irréductibles. Le
théorème d’Euclide d’écriture comme produit unique d’irréductibles
(unitaires) est toujours vraie.
Une description complète des irréductibles deC[X ] et deR[X ] est pos-
sible et assez simple.

↭ On termine par une extension hors-programme de la notion de
congruence.
Et plus largement de la notion d’anneau euclidien (factoriel. . .) et
d’idéaux. . .

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Algorithme de la division euclidienne
— Truc & Astuce pour le calcul - Suites (Un) et (Vn)
— Savoir-faire - Décomposition en produit d’irréductibles de C[X ]
— Savoir-faire - Décomposition en produit d’irréductibles de R[X ]

Notations

Notations Définitions Propriétés Remarques
D(A) Ensemble des diviseurs de A
AK[X ] ou (A) Ensemble des multiples de A
A↑B PGCD de A et B (généralisable) (A)+ (B) = (A↑B) Défini à une constante multiplica-

tive près
A▽B PPCM de A et B (généralisable) (A)∋ (B) = (A▽B) Défini à une constante multiplica-

tive près

Retour sur les problèmes

135. C’est le but de ce cours.

136. Considérons f ε g : P ↓↔
∑

D|P , D unitaire
f (D)g (P/D).

On a toujours, pour P ↑Q = 1, D|PQ ⇓⇔ D = D1D2 avec D1|P , D2|P .
Dans ce cas ϑ : D ↓↔ (D1,D2) := (D ↑P,D ↑Q) établit une bijection

D(PQ) sur D(P )∝D(Q).
Supposons que f et g soient multiplicative. Alors on a, pour P ↑Q = 1 :

f εg (PQ) =
∑

D|PQ unitaire
f (D)g (PQ/D) =

∑

D1|P,D2|Q, unitaires
f (D1D2)g (PQ/D1D2)

=
∑

D1|P,D2|Q, unitaires
f (D1) f (D2)g (P/D1)g (Q/D2) = f (P )∝ g (Q)

L’élément neutre est f : 1 ↓↔ 1 et f : P ↓↔ 0 si P ⇐= 1.
Tout est pareil ! avec une fonction de Möbius. . ..
La question est : que peut nous apprendre alors un tel outil ?

137. Concernant le grand théorème de Fermat, on parle ici du théorème de
Liouville.
Supposons que P n +Qn +Rn = 0 avec P,Q,R ≃C[X ] (avec n ∞ 3).

(a) On commence par montrer qu’il suffit d’étudier le cas P,Q,R pre-
miers entre eux deux à deux

(sinon, si D|P et D|Q, alors D|R, et on peut simplifier)

(b) On dérive
P n

Rn + Qn

Rn =↖1(qu’on ne peut pas faire avec les entiers) :

P n↖1(PR ∈ ↖RP ∈) =↖Qn↖1(QR ∈ ↖RQ ∈)
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(c) Si P et R ne sont pas associés, alors PR ∈ ↖R ∈P ⇐= 0.
Puis Q ↑P = 1, donc Qn↖1|PR ∈ ↖R ∈P et de même P n↖1|QR ∈ ↖R ∈Q.
On ne peut avoir degR > max(degP,degQ), donc au moins un des
degP ou degQ est le maximum de {degP,degQ,degR}.
Supposons que p = degP = max(degQ,degR).
Par division P n↖1|QR ∈ ↖ RQ ∈, alors degP n↖1 = (n ↖ 1)p → degQ +
degR ↖1 < 2degP .
Contradiction, puisque n ∞ 3, donc n ↖1 ∞ 2 (sauf si degP = 0. . .)

138. Classiquement, on noteFp , le corps
(
Z

pZ
,+,∝


. On se place donc sur

Fp [X ], les polynômes à coefficients dans Fp .
Si P est un polynôme irréductible de Fp [X ], et de degré n,

alors
Fp [X ]

(P )
, l’ensemble des classes d’équivalences pour la relation

·↘ ·[P ]
et un corps. On exploite le théorème de Bézout.

Cet ensemble possède comme ensemble de représentant {Q ≃
Fp [X ] | degQ < n}, de cardinal pn .
Existe-t-il un tel polynôme irréductible ? Oui !
Comment en trouver ? On exploite le lemme suivant :
Pour tout r ≃N, sur Fp , le polynôme R = X pr ↖X est égal au produit de
tous les polynômes unitaires irréductibles de degré divisant r .
Cela donne la minoration :

Nbre de polynôme de degré n irréductible ∞ pn ↖p7n/2∀+1

n

Et précisément, P de degré n est irreductible sur Fp ssi :
— P |X pn ↖X
— ′ q ≃P tel que q |n, P ↑X pn/q ↖X = 1
(. . . Voir Wikipedia ou le cours de Demazure p.220)
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