
Chapitre 31
Le corps des fractions de
l’anneau intègre des
polynômes

Nous avons vu au chapitre précédent un lien fort entre Z et K[X ]. Ces deux an-
neaux intègres présentent un autre problème en commun : ce ne sont pas des corps,
c’est-à-dire que la plupart de leurs éléments ne sont pas inversibles.
Pour éviter ce problème pour Z, nous avons construit Q, corps des fractions ra-
tionnelles grâce à la relation d’équivalence (p1, q1)R(p2, q2) ssi q1→p2 = q2→p1.
Nous exploitons le même principe ici pour construire K(X ), le corps des fractions
rationnelles.
Nous nous concentrons alors sur la décomposition en éléments simples de toutes
fractions, cela est souvent bien pratique lorsque l’on rencontre des fonctions ra-
tionnelles (à intégrer par exemple. . .).
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642 Le corps des fractions de l’anneau intègre des polynômes

1. Problèmes

Si l’on conduit le même processus de construction qui permet de passer
de Z àQ (afin d’obtenir un corps) à partir deK[X ], qu’obtient-on?
Quel est ce processus déjà ?

Problème 139 - Z ↑Q et K[X ] ↑??

Depuis le début d’année, on a rencontré des (fonctions) fractions ration-
nelles essentiellement dans le cours du calcul d’intégrales.
La stratégie consistait alors à réduire le plus possible la complexité du
numérateur, et de factoriser le dénominateur afin d’obtenir une décom-
position en éléments simples. Nous avons pratiqué cette méthode dans
des cas simples, sans en voir la théorie.
Est-il toujours possible de décomposer toute fraction rationnelle en élé-
ments simples? Et qu’est-ce que cela peut signifier ?
En réinvestissant la théorie, est-il possible de trouver un algorithme de
décomposition (qui marcherait à tous les coups)?
Quelle conséquence pour les intégrations de fractions rationnelles.

Problème 140 - Intégration de fractions

Une paramétrisation naturelle du cercle est donné par le couple
(cos t , sin t ). Mais les fonctions cos et sin sont transcendantes.
Considérons le cercle d’équation x2 + y2 = 1 et la droite d’équation
y = a(x +1), de pente a et qui passe par A(↓1,0).
L’intersection de ces deux courbes donne les points M(x, y) tels que
1 = x2 + y2 = x2 +a2(x +1)2.
Or on sait que (↓1,0) est toujours une solution de cette intersection, on
peut donc factoriser l’équation par x +1 :

x2+a2(x+1)2 = 1 ↔↗ (x+1)[(x↓1)+a2(x+1)] = 0 ↔↗ (x↓1) = 0 ou x = 1↓a2

1+a2

Comme a(x +1) = a( 1↓a2

1+a2 +1) = 2a
1+a2 On trouve donc un nouveau para-

métrage rationnel du cercle : ( 1↓a2

1+a2 , 2a
1+a2 ).

Ce résultat vous rappelle-t-il quelque chose ?
Comment exploiter cette paramétrisation pour trouver tous les triplets
entiers pythagoriciens (x2 + y2 = z2)?
Est-ce que la méthode s’adapte à autre chose que le cercle trigonomé-
trique (cubique)? Qu’en faire ?

Problème 141 - Paramétrage rationnel du cercle

2. K(X ), corps des fractions de K[X ] anneau in-
tègre

2.1. Construction deK(X )

On crée l’ensembleK(X ) à l’image de l’ensembleQ.
Z était un anneau intègre mais pas un corps, l’ensembleQ est le plus petit corps contenant

Heuristique - Ensemble quotient
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2.K(X ), corps des fractions deK[X ] anneau intègre 643

Z. De même on va créer un corps contenantK[X ].

La relation binaire définie surK[X ]→ (K[X ] \ {0}) par

(A1,B1)R(A2,B2) ↘ A1B2 = A2B1

est une relation d’équivalence.
On note K (X ) l’ensemble des classes d’équivalence pour cette relation, un

élément F de K(X ) est écrit sous la forme F = A
B

(ou F (X ) = A(X )
B(X )

) où

(A,B) ≃K[X ]→ (K[X ] \ {0}).

On a donc
A1

B1
= A2

B2
↘ A1B2 = A2B1

F s’appelle une fraction rationnelle.

Définition - Fractions rationnelles (par classe d’équivalence)

Muni des lois internes + et → définies par

A1

B1
+ A2

B2
= A1B2 +B1 A2

B1B2
,

A1

B1
→ A2

B2
= A1 A2

B1B2

(K(X ),+,→) est un corps contenantK[X ] (on identifie B à
B
1

).

Proposition - Corps des fractions rationnelles

Démonstration
Il suffit d’écrire une à une les propriétés à vérifier. . .

Soit F1 =
A1

B1
et F2 =

A2

B2
deux fractions rationnelles.

Alors F1 ⇐F2 est également une fraction rationnelle

Proposition - Composition

Démonstration

On peut supposer que A1 =
n∑

k=0
ak X k et B1 =

m∑

h=0
bh X h . Alors

F1 ⇐F2 =
A1(F2)
B1(F2)

=

n∑

k=0
ak

Ak

B k

m∑

h=0
bh

Ah

B h

= B m

B n

n∑

k=0
ak Ak B n↓k

m∑

h=0
bh AhB m↓h

On notera par la suite que n ↓m = degF1.

2.2. Représentant irréductible. Degré et pôle

Soit F = A
B

et D = A⇒B .

On a donc A = DP et B = DQ avec P ⇒Q = 1, et alors F = P
Q

.

On dit que
P
Q

est un représentant irréductible de F .

Définition - Représentant irréductible
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644 Le corps des fractions de l’anneau intègre des polynômes

Soit F ≃K(X ).
L’élément de Z⇑ {↓⇓}, deg A ↓degB , est indépendant du choix du repré-

sentant
A
B

de F .

On l’appelle degré de la fraction rationnelle F , noté degF .

Définition - Degré

Il faut démontrer l’indépendance par représentant.

Démonstration

Soit F = A1

B1
= A2

B2
.

— Si F = 0 alors A1 = A2 = 0 et deg A1 ↓ degB1 = deg A2 ↓
degB2 =↓⇓.

— Si F ⇔= 0, alors A1 ⇔= 0 et A2 ⇔= 0. On a A1B2 = A2B1 donc
deg A1 + degB2 = deg A2 + degB1 d’où deg A1 ↓ degB1 =
deg A2 ↓degB2.

On a les propriétés suivantes :

deg(F1 +F2) ↖ max(degF1,degF2)
degF1F2 = degF1 +degF2
degF =↓⇓↘ F = 0

Proposition - Extension des propriétés sur les degrés

Démonstration

On suppose que F1 = A1
B1

et F2 = A2
B2

deg(F1F2) = deg
A1 A2

B1B2
= deg(A1 A2↓deg(B1B2) = deg(A1)+deg(A2)↓deg(B1)↓deg(B2) = degF1+degF2

Et ainsi de suite

Soit F ≃K(X ),
P
Q

un représentant irréductible de F . Soit a ≃K. On dit que

a est une racine (ou un zéro) de F si P (a) = 0 (a racine de P ) et que a est un
pôle de F si Q(a) = 0 (a racine de Q).
La multiplicité d’une racine (resp. d’un pôle) de F est sa multiplicité en tant
que racine de P (resp. de Q).

Définition - Racines et pôles

STOP Remarque - a pôle et racine de F ?
L’ensemble des racines et l’ensemble des pôles sont disjoints. (pourquoi ?)

Exemple - Racines et les pôles de
X 3 +X 2 +X ↓3

X 2 ↓X

Quels sont les racines et les pôles de
X 3 +X 2 +X ↓3

X 2 ↓X
?

X 3 +X 2 +X ↓3 = (X ↓1)(X 2 +2X +3) = (X ↓1)(X +1+ i
↙

2)(X +
1↓ i

↙
2).

X 2↓X = X (X ↓1). Deux racines : ↓1↓i
↙

2 et ↓1+i
↙

2 et un pôle
0.
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3. Décomposition en éléments simples des fractions rationnelles 645

2.3. Fonction rationnelle

Soit F ≃K(X ),
P
Q

un représentant irréductible de F . On noteωF l’ensemble

des pôles de F et on définit alors la fonction rationnelle associée à F par

F̃ : K\ωF ↑K

x ∝↑ P̃ (x)

Q̃(x)

Définition - Fonction rationnelle

STOP Remarque - Egalité des fonctions
Lorsque K= R ou C (ou plus généralement un corps infini) on a F̃1 = F̃2 si et
seulement si F1 = F2.

2.4. Dérivation

Soit F ≃ K(X ). La fraction rationnelle
A′B ↓ AB ′

B 2 est indépendante du re-

présentant choisi
A
B

de F . On l’appelle dérivée de la fraction rationnelle F ,

notée F ′.
Les propriétés vis à vis de la somme, du produit, ou du produit par un élé-
ment deK sont les propriétés usuelles.

Définition - Dérivée

Il faut démontrer l’indépendance du résultat en rapport au représentant.

Démonstration

Soit F = A
B

= A1

B1
. On a alors AB1 = A1B donc en dérivant A′B1 +

AB ′
1 = A′

1B + A1B ′. En multipliant par BB1, en utilisant AB1 =
A1B et en regroupant les termes on obtient (A1B ′

1 ↓ A′
1B1)B 2 =

(AB ′ ↓ A′B)B 2
1 d’où

A1B ′
1 ↓ A′

1B1

B 2
1

= AB ′ ↓ A′B
B 2 .

STOP Remarque - Dérivation et fonction rationnelle
LorsqueK=R les fonctions rationnelles F̃ ′ et F̃ ′ coincident.

3. Décomposition en éléments simples des frac-
tions rationnelles

3.1. Partie entière

Soit F = P
Q

≃K(X ) avec P ⇒Q = 1.

Alors il existe un unique couple (E , F̂ ) ≃K[X ]→K(X ) tel que

F = E + F̂ et deg F̂ < 0.

E est appelée partie entière de la fraction F .

Proposition - partie entière
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646 Le corps des fractions de l’anneau intègre des polynômes

Démonstration
Si F̂ = A

B (irréductible), avec deg F̂ < 0, donc deg A↓degB < 0, i.e.
deg A < degB .

On a donc F = P
Q

= E + A
B

, donc
P
Q

= EB + A
B

.

Par irréductibilité, Q et B sont associés et donc on trouve : P =
EQ + A, avec deg A < degQ.
Finalement, il s’agit de la division euclidienne de P par Q : E est
le quotient et A le reste.
La décomposition est unique.

Si degF < 0 alors E = 0,
sinon on effectue la division euclidienne de P par Q :

P = EQ +R et F = P
Q = E + R

Q
.

Savoir faire - Comment obtenir la partie entière?

3.2. Principe de décomposition sur un corpsK

Soit F = P
Q

≃K(X ) une fraction irréductible. Q se décompose en produit de

polynômes irréductibles

Q =ωQk1
1 . . .Q

kp
p =ω

p∏

j=1
Q

k j

j .

Alors F s’écrit de manière unique, E étant la partie entière,

F = E +
p∑

j=1

( P1 j

Q j
+

P2 j

Q2
j

+·· ·+
Pk j j

Q
k j
j

)

où Pi j ≃K[X ],degPi j < degQ j .
Cette décomposition s’appelle la décomposition en éléments simples sur
K (ou dansK(X )) de la fraction F .

Si Q j = X ↓a j , a j ≃K,
(P1 j

Q j
+

P2 j

Q2
j

+·· ·+
Pk j j

Q
k j

j

)
s’appelle la partie polaire de

F relative (ou associée) au polynôme Q j (ou au pôle a j si Q j = X ↓a j ).

Théorème - Décomposition en éléments simples surK

On exploite une formule de Bézout généralisée pour démontrer l’existence (par récurrence
sur p).
Puis avec la décomposition en base Qi (qui correspond à la formule de Taylor si
Qi = (X ↓ai )).

Heuristique - Principe de démonstration

Une application déjà vue de la décomposition
en éléments simples concerne le calcul de pri-
mitive/intégrale d’une fraction rationnelle.
Une autre application peut se faire pour les
série génératrice rationnelle (avec des séries
géométriques) ou bien le calcul de DLn . Par

exemple, avec X 3

(X↓1)3(X↓2)2 = ·· · = 1
(X↓1)3 +

5
(X↓1)2 + 12

(X↓1) +
8

(X↓2)2 ↓ 12
X↓2 , on peut affir-

mer :
x3

(x↓1)3(x↓2)2 =
x↑1

1
(x↓1)3 + 5

(x↓1)2 + 12
x↓1 +20

Pour aller plus loin - A quoi cela peut ser-
vir?

Démonstration

Ce résultat se démontre en plusieurs étapes, en voici les grandes
lignes :

— Tout d’abord l’existence.
Première étape : on montre par récurrence sur p que F
s’écrit sous la forme

F = E +
p∑

i=1

Bi

Q
ki
i

avec degBi < degQki
i .
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3. Décomposition en éléments simples des fractions rationnelles 647

Si p = 1 on a le résultat d’après la proposition précédente.
Supposons le résultat vrai à un rang p ↓1 ∞ 1.

Au rang p, on a Q
kp
p ⇒ (Qk1

1 . . .Q
kp↓1

p↓1 ) = 1

donc ∈(U ,V ) ≃ K[X ] tel que UQ
kp
p +V Qk1

1 . . .Q
kp↓1

p↓1 = 1

avec degV < degQ
kp
p

et donc PUQ
kp
p +PV Qk1

1 . . .Q
kp↓1

p↓1 = P . On a alors

F = PU

Q
k1
1 ...Q

kp↓1
p↓1

+ PV

Q
kp
p

Par division euclidienne PV = ApQ
kp
p +Bp avec degBp <

degQ
kp
p , d’où :

F = Ap + Bp

Q
kp
p

+ PU

Q
k1
1 ...Q

kp↓1
p↓1

D’après l’hypothèse de récurrence au rang p↓1, on obtient

F = Ap +Ep↓1 +
p∑

i=1

Bi

Q
ki
i

avec degBi < degQki
i .

Comme deg

(
p∑

i=1

Bi

Q
ki
i

)
< 0, d’après la proposition précé-

dente (unicité), Ap +Ep↓1 est la partie entière E .
Seconde étape : on montre que pour B ≃ K [X ],Q ≃K[X ]\K
et k ≃N, il existe V0,V1, . . .Vk ≃K[X ] vérifiant

B =V0 +V1Q +·· ·+VkQk avec degVi < degQ.

Sur C[X ], si Q est irréductible, il est de la forme X ↓ a et il
s’agit donc de la formule de Taylor.
Plus généralement (et donc sur R[X ] en particulier) on
montre ce résultat par récurrence sur degB en utilisant la
division euclidienne.
(En fait il s’agit d’une sorte de décomposition dans la base
Q, comme en informatique en début d’année)
En appliquant la première étape, puis la seconde à B =
Bi ,Q =Qi et k = ki , on obtient l’existence voulue.

— Pour l’unicité, il s’agit en fait de démontrer l’unicité à cha-
cune des étapes, d’abord pour les Bi , puis pour les Vj . (tra-
vail sur les degrés et la divisibilité).

STOP Remarque - Décompostion sur une base Qi
En base b, il y a deux algorithmes possibles :

1. On cherche la plus grande puissance de b qui divise a : a ∞ ωk bk avec
ωk < b et bk+1 > a).
Puis on reprend l’algorithme avec a′ ∋ a ↓ωk bk .
On trouve alors a =ωk bk +ωk↓1bk↓1 + . . .ω0b0.

2. On fait la division de a par b, on garde en mémoire le reste r0 et
on reprend l’algorithme avec le quotient obtenu. On trouve alors a =
r0 + r1b + r2b2 +·· · = r0 +b(r1 +b(r2 + . . . ))
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648 Le corps des fractions de l’anneau intègre des polynômes

La première méthode s’adapte et s’appelle l’algorithme de division par puis-
sance décroissante.
La seconde méthode s’adapte et s’appelle l’algorithme de Hörner.

Si a est un pôle simple de F = P
Q

(degF < 0), pour trouver la partie polaire

ω

X ↓a
, on peut utiliser ω= P (a)

Q̂(a)
= P (a)

Q ′(a)
où Q̂ est telle que Q = (X ↓a)Q̂.

Proposition - Pôles simples

Ce second résultat (avec Q ′, facile à obtenir car polynôme) évite même la
factorisation de Q

Démonstration
Si P = EQ +P , et a un pôle de F , alors P (a) = E(a)Q(a)+P (a) =
P (a).
On peut donc suppose que degF < 0 comme P

Q car F (a) = P (a)
Q(a) =

P (a)
Q(a) .

F = P
Q

= P

Q̂ → (X ↓a)
= ω

X ↓a
+ R

Q̂
.

Donc en multipliant par (X ↓a) : (X ↓a)F = P

Q̂
=ω+ R → (X ↓a)

Q̂
.

Et comme a est un pôle simple (donc Q ′(a) ⇔= 0), on a en X = a :
P (a)

Q̂(a)
=ω+0.

Par ailleurs, d’après la règle du produit : Q ′ = (X ↓ a)Q̂ ′ + Q̂ et
donc en substituant a à X : Q ′(a) = 0+Q̂(a) =ω.

Si a est un pôle simple de F = P
Q

, la partie polaire
ω

X ↓a
s’obtient avec

ω= P (a)
Q ′(a)

Savoir faire - Obtenir la partie polaire - cas pôle simple

En isolant la partie polaire relative au pôle a de multiplicité m, on a, pour
Q = (X ↓a)mQ̂,

F =
m∑

k=1

ωk

(X↓a)k
+ P1

Q̂
.

• En multipliant cette égalité par (X ↓ a)m et en substituant a à X on
trouve ωm .

• On retranche ensuite
ωm

(X ↓a)m à F , on obtient donc après simplifica-

tion une fraction dont a est pôle de multiplicité m↓1 et on recommence.
Cette méthode est en pratique applicable si m est petit.
D’autres possibilités une fois ωm obtenu :
• On multiplie par X puis on prend la limite en +⇓ de la fonction ration-
nelle obtenue : cela permet généralement d’obtenir ω1.
• Si m ∞ 3, on a donc obtenu ωm et ω1. Si l’on veut éviter les soustractions
successives, on substitue des valeurs particulières simples à X autres
que le pôle (0,...)

Savoir faire - Obtenir la partie polaire - cas d’un pôle multiple
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3. Décomposition en éléments simples des fractions rationnelles 649

Cela marche aussi pour m = 1.
Exercice

Décomposer en éléments simples la fraction F = 1

X 2(X ↓1)3 .

3.3. Application de la décomposition sur le corps C

SurC, on applique le théorème « Décomposition en éléments simples surK »,
les facteurs irréductibles sont des polynômes de degré 1.

Soit F = P
Q

≃C(X ) une fraction irréductible. Q se décompose en produit de

polynômes irréductibles Q =ω
p∏

j=1
(X ↓ε j )k j .

Alors F s’écrit de manière unique, E étant la partie entière et Ai j ≃C,

F = E +
p∑

j=1

( A1 j

X↓ε j
+

A2 j

(X↓ε j )2
+·· ·+

Ak j j

(X↓ε j )k j

)

Théorème - Décomposition en éléments simples sur C

Si P =ω
p∏

j=1
(X ↓ε j )k j alors P ′

P =
p∑

j=1

k j

X↓ε j
.

Théorème - Lemme de Gauss-Lucas

Démonstration

Un simple calcul :

P ′ =ω
p∑

j=1

(
k j (X ↓ε j )k j↓1

p∏

i=1,i ⇔= j
(X ↓εi )ki

)
=

p∑

j=1

(
k j

P
X ↓ε j

)

Donc
P ′

P
=

p∑

j=1

k j

X ↓ε j

Le théorème de Rolle appliqué à P̃ permet d’af-
firmer qu’entre deux racines de P , se trouve
une racine de P ′. Et si les racines de P sont dans
C?
Le théorème de Gauss-Lucas permet d’affir-
mer que si P ′(ϑ) = 0, alors (en prenant la partie

conjuguée) :
p∑

j=1

k j

|ϑ↓ε j |2
(ϑ↓ε j ) = 0.

Donc en notant ω j =
k j

|ϑ↓ε j |2
et N =

p∑
j=1

ω j , on

a ϑ= 1
N

p∑

j=1
ω jε j .

Par conséquent : ϑ est dans l’enveloppe
convexe des racines (ε j )

Pour aller plus loin - Localisation des ra-
cines de P ′

3.4. Application de la décomposition sur le corps R

SurR, on applique le théorème « Décomposition en éléments simples surK »,
les facteurs irréductibles sont des polynômes de degré 1 ou 2 avec ω< 0.

Soit F = P
Q

≃R(X ) une fraction irréductible. Q se décompose en produit de

polynômes irréductibles

Q =ω
p ′∏

j=1
(X ↓ε j )k ′

j

p ′′∏

j=1
(X 2 +ϖ j X +ϱ j )k ′′

j .

Alors F s’écrit de manière unique, E étant la partie entière,

F = E+
p ′∑

j=1

( A1 j

X↓ε j
+

A2 j

(X↓ε j )2
+·· ·+

Ak′j j

(X↓ε j )
k′j

)
+

p ′′∑

j=1

( B1 j X+C1 j

X 2+ϖ j X+ϱ j
+·· ·+

Bk′′j j X+Ck′′j j

(X 2+ϖ j X+ϱ j )
k′′j

)

Théorème - Décomposition en éléments simples sur R
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650 Le corps des fractions de l’anneau intègre des polynômes

tous les coefficients A,B ,C étant des réels.
La première somme est formée d’éléments simples de première espèce, la
seconde d’éléments simples de deuxième espèce.

On peut
— décomposer dans C(X ) et regrouper les pôles conjugués : cela

marche bien quand la multiplicité est 1 ;
— procéder par identification;
— quand il ne reste qu’un ou deux coefficients à calculer, on utilise

des valeurs particulières : 0,1,↓1,+⇓,↓⇓ ;
— utiliser une éventuelle parité et l’unicité de la décomposition.

Savoir faire - Décomposition en élément simples de deuxième espèce

Exercice

Décomposer en éléments simples les fractions F = 1

(X 2 ↓1)2 .

4. Bilan

Synthèse

↭ Exactement de la même manière queQ étendZ en intégrant les inver-
sible, on construit le corps des fractions rationnelles K(X ) à partir de
l’anneau intègreK[X ].

↭ On étend alors la notion de degré et de derivée ; on définit les frac-
tions irréductibles ; on définit aussi les pôles (et racines) des fractions
rationnelles.

↭ Un savoir-faire nous mobilise tout particulièrement : l’algorithme de
décomposition en éléments simples de A

B .
D’abord l’écriture (existence) : on commence par faire la division eu-
clidienne de A par B ; puis on factorise le dénominateurs B en produit
de puissance d’irréductibles ; on trouve enfin les numérateurs (de de-
gré minimal) qu’il faut associé à chacun.
Puis la recherche des coefficients exacts des polynômes (différents
savoir-faire à combiner)

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Comment obtenir la partie entière?
— Savoir-faire - Obtenir la partie polaire - cas pôle simple
— Savoir-faire - Obtenir la partie polaire - cas pôle multiple
— Savoir-faire - Décomposition en éléments simples de deuxième espèce

Notations

Notations Définitions Propriétés Remarques

K(X ) Corps des fraction rationnelle à partir de
l’anneau intègreK[X ]

K[X ]
R

avec (A,B)R(C ,D) ssi AD = BC Ce sont les classes d’équivalence
pour la relation des fractions

Retour sur les problèmes

139. Cours

140. Oui, on se restreint d’abord aux irréductibles avec la décomposition en
éléments simples sur les dénominateurs.
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4. Bilan 651

141. Supposons que x2 + y2 = z2. On a donc a ≃ Q tel que
x
z
= 1↓a2

1+a2 et

2a
1+a2 .

Si on note a = p
q on trouve en multipliant tout par q2 :

x = q2 ↓p2, y = 2pq et z = q2 +p2.
C’est exactement toutes les solutions possibles de triplets pytha-
goriciens premiers entre eux (on peut aussi multiplier par ω). On
peut l’adapter au cubique et obtenir une nouvelle loi de groupe. . .
(https ://webmath.univ-rennes1.fr/master/master2/textes/legeay.pdf)
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