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Problemes

Probléme Pairs, impairs. . .

Probléme Table de multiplication modulo n

x5 11 2 3 4
112 3 4
2 |2 41 3
3 (314 2
4 |4 3 21

xg |1 2 3 4 5
1123 45
2 /2 40 2 4
3 /3030 3
4 |4 2 0 4 2
5|5 4 3 21
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Proposition - Intégrité de 'anneau Z

2.1, Intégrité de Z et régularité

Z est un anneau integre.
Formellement :

Va,beZ, axb=0—a=00ub=0



Intégrité

Proposition - Intégrité de 'anneau Z

Z est un anneau integre.
Formellement :

VabeZ,

Démonstration

axb=0=>a=00ub=0
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2.1, Intégrité de Z et régularité

Les éléments non nuls de Z sont réguliers. Formellement :

VaeZ,a#0, Vb,ceZaxb=axc=b=c



Régularité

Comme pour tout anneau intégre,
Proposition - Régularité de 'anneau Z

Les éléments non nuls de Z sont réguliers. Formellement :

VaeZ,a#0, Vb,ceZaxb=axc=b=c

Démonstration
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Régularité

Comme pour tout anneau intégre,
Proposition - Régularité de 'anneau Z

Les éléments non nuls de Z sont réguliers. Formellement :

VaeZ,a#0, Vb,ceZaxb=axc=b=c

Démonstration
Remarque. A quoi sert cette propriété ?
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Diviseurs et ensemble des diviseurs

Définition - Diviseur, multiple

Soit (a,b) € Z2. On dit que b divise a s'il existe k € Z tel que
a =kb eton note bla.
On dit aussi que b est un diviseur de a, ou que a est un multiple

de b.
On note bZ =1{b x k; k € Z} 'ensemble des multiples de b.
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Diviseurs et ensemble des diviseurs

Définition - Diviseur, multiple

Soit (a,b) € Z2. On dit que b divise a s'il existe k € Z tel que

a =kb eton note bla.

On dit aussi que b est un diviseur de a, ou que a est un multiple
de b.

On note bZ = {b x k; k € Z} 'ensemble des multiples de b.

Savoir-faire. Montrer que b divise a

(Sous-entendu : dans Z). Le plus important n’est pas de montrer
I'existence de & tel que & x b = a mais bien de montrer que k € Z
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Soit (a,b) € Z2. On dit que b divise a s'il existe k € Z tel que

a =kb eton note bla.

On dit aussi que b est un diviseur de a, ou que a est un multiple
de b.

On note bZ = {b x k; k € Z} 'ensemble des multiples de b. 22 o s

Savoir-faire. Montrer que b divise a

(Sous-entendu : dans Z). Le plus important n’est pas de montrer
I'existence de & tel que & x b = a mais bien de montrer que k € Z

Définition - Ensemble des diviseurs

On notera par la suite 2(a) 'ensemble des diviseurs de a. Pour
a # 0, cet ensemble ne contient qu'un nombre fini d’éléments
puisque : dla = |d| < |a].



Remarques

Application Majoration du cardinal
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Remarques

Application Majoration du cardinal
Remarque Le casde O et 1
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Application Majoration du cardinal
Remarque Le casde O et 1

Définition - Nombres associés

2.2, Diviseurs, multiples

Soit (a,b) € Z2. on dit que @ et b sont associés si a|b et bla. On
a la caractérisation suivante :

(albetdbla)o |a|=|bleoTeec{-1,1}=Z" :a=¢€b
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Soit (a,b) € Z2. Pour (u,v)€Z%, neZ, n#0o0na :

t

2.2, Diviseurs, multiples

(dla etd|b) = d|au + bv Jreeammae

an|lbn < alb
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Proposition - Division de combinaison linéaire

Soit (a,b) € Z2. Pour (u,v)€Z%, neZ, n#0o0na :

(dla etd|b) = d|au + bv

an|lbn < alb

Démonstration



Division et combinaison linéaire

Proposition - Division de combinaison linéaire

Soit (a,b) € Z2. Pour (u,v)€Z%, neZ, n#0o0na :
(dla etd|b) = d|au + bv

an|lbn < alb

Démonstration
Exercice
Montrer que la relation « divise » est une relation d’ordre
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Théorie

Heuristique - La division euclidienne : des soustractions !

Il est souvent beaucoup plus efficace de considérer la division
euclidienne comme une succession de soustraction de a par b
(ou d’addition de b a a si a < 0).

(De méme pour 'algorithme d’Euclide).
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Heuristique - La division euclidienne : des soustractions! = Divisibité dans Z

= Arithmétique

Il est souvent beaucoup plus efficace de considérer la division modulaire
euclidienne comme une succession de soustraction de a par b

(ou d’addition de b a a si a < 0).

(De méme pour 'algorithme d’Euclide).

2.3, Division euclidienne de a

Théoreme - Division euclidienne par

Soient a € Z, b € N*. |l existe un unique couple (q,r) € Z x N tel
que

a=bg+ret0<r<b.
q et r sont appelés respectivement quotient et reste de la division
euclidienne de a par b.
Dans ce cours, nous noterons comme en Python : a//b pour
désigner g et a%b pour désigner r.
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Heuristique - La division euclidienne : des soustractions! = Divisibité dans Z
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Il est souvent beaucoup plus efficace de considérer la division modulaire
euclidienne comme une succession de soustraction de a par b

(ou d’addition de b a a si a < 0).

(De méme pour 'algorithme d’Euclide).

2.3, Division euclidienne de a

Théoreme - Division euclidienne par

Soient a € Z, b € N*. |l existe un unique couple (q,r) € Z x N tel
que

a=bg+ret0<r<b.
q et r sont appelés respectivement quotient et reste de la division
euclidienne de a par b.
Dans ce cours, nous noterons comme en Python : a//b pour
désigner g et a%b pour désigner r.
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2.3, Division euclidienne de a

bla si et seulement si le reste de la division euclidienne de a par ST
b vaut 0.



Critére de divisibilité

Proposition - Critere de divisibilité et division euclidienne

Soienta € Z, b e N*.
bla si et seulement si le reste de la division euclidienne de a par
b vaut 0.

Démonstration
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Algorithme

Python - Division euclidienne

1

10
11
12

def div_eucl(a,b):
"""division euclidienne de a par b"""

#Principe : on soustrait b autant que necessg|

d,k=a,0
if a<0
c,eps=-b,-1 # si a<0, il faudra additionngr B
else
c,eps=b,1
while d>=b or d<O:
d=d-c

k=k+eps #k = nbre de soustractions =
return (k,d)

D

quot
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Python - Division euclidienne R

= Arithmétique

modulaire
1 def div_eucl(a,b):
2 """division euclidienne de a par b"""
3 #Principe : on soustrait b autant que necessgjre a.a
4 d,k=a,0 Intgrité de Z ot régul
5 if a<0 :
6 c,eps=-b,-1 # si a<0, il faudra additionn@r B
7 else
8 c,eps=b,1
9 while d>=b or d<O0:
10 d=d-c
11 k=k+eps #k = nbre de soustractions = quoljient
12 return (k,d)

Application div_eucl (12,5) etdiv_eucl (-12,5)
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Python - Division euclidienne

1 def div_eucl_rec(a,b):

2 """calcul de la division euclidienne de a par||b: "par-rect
3 if a<b and a>-1: 2 B e e
4 return (0,a) =

5 elif a>b

6 m,n=div_eucl_rec (a-b,b)

7 return (m+1,n)

8 else

9 m,n=div_eucl_rec (a+b,b)

10 return (m-1,n)
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2.4. Arithmétique modulaire
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Relation d’équivalence

Définition - @ congru a b modulo n

SoientneN, a,be”Z.
On dit que a est congru a b modulo n si n divise a — b
(<—=a-benz),
c’est-a-dire s'il existe k € Z tel que a = b + kn.
On note a = b[n].
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Définition - @ congru a b modulo n

SoientneN, a,be”Z.
On dit que a est congru a b modulo n si n divise a — b
(<—=a-benz),
c'est-a-dire s'il existe k € Z telque a = b + kn. 24, At oo
On note a = b[n].

Pour tout n € N*, la relation de congruence modulo n est une
relation d’équivalence (nous I'avons déja vu).
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Définition - @ congru a b modulo n

SoientneN, a,be”Z.
On dit que a est congru a b modulo n si n divise a — b
(<—=a-benz),
c'est-a-dire s'il existe k € Z telque a = b + kn. 24, At oo
On note a = b[n].

Pour tout n € N*, la relation de congruence modulo n est une
relation d’équivalence (nous I'avons déja vu).
Remarque U,
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La proposition suivante donne un systéme de représentant
naturel (et donc le nombre de classe d’équivalence)

Proposition - Reste

Soit n € N*. Pourtout a,b € Z
a=b[n] < a%n =b%n.

2.4. Arithmétique modulaire

Ainsi, [[0,n — 1]] est un systéme de représentant de ]’
=-n

ensemble possédant donc n éléments
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La proposition suivante donne un systéme de représentant
naturel (et donc le nombre de classe d’équivalence)

Proposition - Reste

Soit n € N*. Pourtout a,b € Z
a=b[n] < a%n =b%n.

2.4. Arithmétique modulaire

Ainsi, [[0,n — 1]] est un systéme de représentant de ]’
=-n

ensemble possédant donc n éléments

Démonstration
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Proposition - Opérations : arithmétique modulaire

Soit n € N. La congruence modulo n est compatible avec
I'addition et la multiplication :
Pour a,a’,b, b’ entiers relatifs on a

2.4. Arithmétique modulaire

a=a'[n] _ a+b=a +b'[n]
b=b'[n] axb=axb'[n]
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Proposition - Opérations : arithmétique modulaire

Soit n € N. La congruence modulo n est compatible avec
I'addition et la multiplication :
Pour a,a’,b, b’ entiers relatifs on a

2.4. Arithmétique modulaire

a=a'[n] _ a+b=a +b'[n]
b=b'[n] axb=axb'[n]

Démonstration
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supprime les informations inutiles (a quoi sert de connaitre
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demandé ?)
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La réduction modulo n réduit les calculs : les nombres ne
dépassent pas la valeur n.
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Remarque Vérifier un calcul
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La réduction modulo n réduit les calculs : les nombres ne
dépassent pas la valeur n.

En revanche, on perd des informations ou bien parfois, on
supprime les informations inutiles (a quoi sert de connaitre
exactement un nombre, alors que seul son dernier chiffre est
demandé ?)

2.4. Arithmétique modulaire

Remarque Vérifier un calcul

Exercice

Avons-nous 'équivalence a = b[n] < ca = cb[n]?

Quelle est I'implication. Donner un contre-exemple de I'implication
réciproque. Une condition pour I'équivalence ?
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Truc &Astuce pour le calcul. Réduction modulo n = Arithmétique

modulaire

La réduction modulo n réduit les calculs : les nombres ne
dépassent pas la valeur n.

En revanche, on perd des informations ou bien parfois, on
supprime les informations inutiles (a quoi sert de connaitre
exactement un nombre, alors que seul son dernier chiffre est
demandé ?)

2.4. Arithmétique modulaire

Remarque Vérifier un calcul

Exercice

Avons-nous 'équivalence a = b[n] < ca = cb[n]?

Quelle est I'implication. Donner un contre-exemple de I'implication
réciproque. Une condition pour I'équivalence ?

Remarque Réduction modulo p, p € &
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> Onditque alb ssi3 g € Ztelque b =agq.

» Critere équivalent : a|b ssi b%a == 0 (notation Python).
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Objectifs
= Divisibilité dans Z

= Arithmétique
modulaire

> Onditque alb ssi3 g € Ztelque b =agq.
» Critere équivalent : a|b ssi b%a == 0 (notation Python).

» Dans ce cas, il faut voir la division euclidienne de b par a comme
une suite (finie) de soustraction de a dans b...
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> Relation de congruence

Lecon 44 - Divisibilité
et congruence sur Z.
PGCD et PPCM

= Divisibilité dans Z

= Arithmétique
modulaire




Lecon 44 - Divisibilité

COﬂC'USIOn et congruence sur Z.
PGCD et PPCM
Objectifs
= Divisibilité dans Z = Divisibilité dans Z

= Arithmétique

= Arithmétique modulaire A
> Relation de congruence

» Un représentant de chaque classe modulo 7 : le reste de la
division euclidienne
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Objectifs
= Divisibilité dans Z = Divisibilité dans Z

= Arithmétique

= Arithmétique modulaire A
> Relation de congruence

» Un représentant de chaque classe modulo 7 : le reste de la
division euclidienne

> Transfert des propriétés algébriques (addition, multiplication.
Division ?)
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= Divisibilité dans Z
= Arithmétique modulaire

Pour la prochaine fois
» Lecture du cours : chapitre 15 : Arithmétique dans Z
3. PGCD
> Exercice n°306, 315 & 317
> TD de jeudi :
8h-10h : N° 388, 398, 307, 310, 316
10h-12h : N° 397, 314, 312, 319, 321
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