Devoir (en classe) n°11 CORRECTION

Problème (d'après CCP-PC (maths 1) 2011)

- I. Droites des moindres carrées dans un espace euclidien
 - 1. $F^{\perp} = \{ \mathbf{x} \in E \mid \forall \ \mathbf{y} \in F, \langle \mathbf{x} | \mathbf{y} \rangle = 0 \}$. On a toujours $\underline{F \oplus F^{\perp}}$

Dans le cas où F est de dimension finie, ce qui est le cas <u>si</u> E est de dimension finie : $E = F \oplus F^{\perp}$ Pour $\mathbf{x} \in E$, on note $p_F(\mathbf{x})$ la projection orthogonale de \mathbf{x} sur F.

2. $\{\|\mathbf{x} - \mathbf{z}\|, \mathbf{z} \in F\}$ est non vide, minorée par 0 donc admet un plus petit élément. Notons $\mathbf{z} = p_F(\mathbf{x})$.

Pour tout $\mathbf{y} \in F$, $\|\mathbf{x} - \mathbf{y}\|^2 = \|(\mathbf{x} - \mathbf{z}) + (\mathbf{z} - \mathbf{y})\|^2 = \|\mathbf{x} - \mathbf{z}\|^2 + \|\mathbf{z} - \mathbf{y}\|^2$ (formule de Pytagore), car $\mathbf{x} - \mathbf{z} \in F^{\perp}$ et $\mathbf{z} - \mathbf{y} \in F$, puisque \mathbf{y} et $\mathbf{z} = p_F(\mathbf{x}) \in F$.

On a alors $\forall \mathbf{y} \in F$, $\|\mathbf{x} - \mathbf{y}\|^2 \ge \|\mathbf{x} - \mathbf{z}\|^2$, donc $\|\mathbf{x} - \mathbf{y}\| \ge \|\mathbf{x} - \mathbf{z}\|$.

Ainsi, $\|\mathbf{x} - \mathbf{z}\|$ est le minimum des $\|\mathbf{x} - \mathbf{y}\|$, $\mathbf{y} \in F$, minimum qui est donc atteint en $\mathbf{z} = p_F(\mathbf{x})$.

Il est unique, sinon, si \mathbf{z}' était une autre solution alors avec $\mathbf{y} = \mathbf{z}'$,

on aurait $\|\mathbf{z}' - \mathbf{z}\|^2 = \|\mathbf{x} - \mathbf{z}'\|^2 - \|\mathbf{x} - \mathbf{z}\|^2 = 0$, et donc $\mathbf{z}' = \mathbf{z}$ car la norme est définie.

- 3. (a) Soit $(\mathbf{x}, \mathbf{y}) \mapsto \langle \mathbf{x} | \mathbf{y} \rangle_F$ un produit subordonné à F, alors
 - $\forall \mathbf{x}, \mathbf{y} \in E, \langle \mathbf{x}, \mathbf{y} \rangle_F = \langle \mathbf{x}, \mathbf{y} p_F(\mathbf{y}) + p_F(\mathbf{y}) \rangle_F = \langle \mathbf{x}, \mathbf{y} p_F(\mathbf{y}) \rangle_F + \langle \mathbf{x}, p_F(\mathbf{y}) \rangle_F \text{ (linéarité)}$ $= \langle \mathbf{x}, \mathbf{y} p_F(\mathbf{y}) \rangle_F \text{ car } \langle \mathbf{x}, p_F(\mathbf{y}) \rangle_F = 0 \text{ puisque } p_F(\mathbf{y}) \in F \text{ par (iii)}.$ $= \langle \mathbf{y} p_F(\mathbf{y}), \mathbf{x} \rangle_F \text{ d'après (ii)}$ $= \langle \mathbf{y} p_F(\mathbf{y}), \mathbf{x} p_F(\mathbf{x}) \rangle_F + \langle \mathbf{y} p_F(\mathbf{y}), p_F(\mathbf{x}) \rangle_F \text{ d'après (ii)}$ $= \langle \mathbf{y} p_F(\mathbf{y}), \mathbf{x} p_F(\mathbf{x}) \rangle_F \text{ car } \langle \mathbf{y} p_F(\mathbf{y}), p_F(\mathbf{x}) \rangle_F = 0 \text{ d'après (iii)}$

Enfin, par symétrie $\forall \mathbf{x}, \mathbf{y} \in E, \langle \mathbf{x}, \mathbf{y} \rangle_F = \langle (\mathbf{x} - p_F(\mathbf{x}) | \mathbf{y} - p_F(\mathbf{y}) \rangle;$

- $\forall \mathbf{x} \in E, \langle \mathbf{x} | \mathbf{x} \rangle_F = \langle \mathbf{x} p_F(\mathbf{x}) | \mathbf{x} p_F(\mathbf{x}) \rangle_F = ||x p_F(\mathbf{x})||^2 = (d(\mathbf{x}, F))^2;$
- Le carré de la distance étant positif, $\forall \mathbf{x} \in E, \langle \mathbf{x} | \mathbf{x} \rangle_F \geqslant 0$;
- $-\forall \mathbf{x} \in E, \langle \mathbf{x} | \mathbf{x} \rangle_F = 0 \iff d(\mathbf{x}, F) = 0 \iff \mathbf{x} = p_F(\mathbf{x}) \iff \mathbf{x} \in F;$
- (b) Pour tout $\mathbf{x}, \mathbf{y} \in E$, $\langle \mathbf{x}, \mathbf{y} \rangle_F = \langle \mathbf{x} p_F(\mathbf{x}), \mathbf{y} p_F(\mathbf{y}) \rangle$, ce qui assure <u>une définition unique</u> du produit subordonné à F, une fois F (et donc p_F) et le produit scalaire donné.
- 4. Pour tout $(\mathbf{x}, \mathbf{y}) \in E^2$, on a $\langle \mathbf{x} | \mathbf{y} \rangle_F = \langle \mathbf{x} p_F(\mathbf{x}) | \mathbf{y} p_F(\mathbf{y}) \rangle$.

Puis d'après l'inégalité de Cauchy-Schwarz : $|\langle (\mathbf{x} - p_F(\mathbf{x})|\mathbf{y} - p_F(\mathbf{y})\rangle| \leq ||\mathbf{x} - p_F(\mathbf{x})|| \cdot ||\mathbf{y} - p_F(\mathbf{y})||$.

Or $\|\mathbf{x}\|_F = \sqrt{\langle \mathbf{x} | \mathbf{x} \rangle_F} = \sqrt{\langle \mathbf{x} - p_F(\mathbf{x}) | \mathbf{x} - p_F(\mathbf{x}) \rangle} = \|\mathbf{x} - p_F(\mathbf{x})\|$, de même $\|\mathbf{y}\|_F = \|\mathbf{y} - p_F(\mathbf{y})\|$. Ainsi pour tout $(\mathbf{x}, \mathbf{y}) \in E^2$, on a $|\langle \mathbf{x} | \mathbf{y} \rangle_F| \leq \|\mathbf{x}\|_F \cdot \|\mathbf{y}\|_F$

On a l'égalité ssi l'inégalité de Cauchy-Schwarz est une égalité,

ssi $\mathbf{x} - p_F(\mathbf{x})$ et $\mathbf{y} - p_F(\mathbf{y})$ sont colinéaires

ssi $\exists (\lambda, \mu) \neq (0, 0)$ tels que $\lambda(\mathbf{x} - p_F(\mathbf{x})) + \mu(\mathbf{y} - p_F(\mathbf{y})) = 0$.

ssi $\exists (\lambda, \mu) \neq (0, 0)$ tels que $\lambda \mathbf{x} + \mu \mathbf{y} = \lambda p_F(\mathbf{x}) + \mu p_F(\mathbf{y})$.

Cela impose qu'il existe $(\lambda, \mu) \neq (0, 0)$ tels que $\lambda \mathbf{x} + \mu \mathbf{y} \in F$.

Réciproquement, si il existe $(\lambda, \mu) \neq (0, 0)$ tels que $\lambda \mathbf{x} + \mu \mathbf{y} \in F$, alors $p_F(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda \mathbf{x} + \mu \mathbf{y}$. par linéarité de p_F , on a donc : $\lambda(\mathbf{x} - p_F(\mathbf{x})) + \mu(\mathbf{y} - p_F(\mathbf{y})) = 0$ et donc $\mathbf{x} - p_F(\mathbf{x})$ et $\mathbf{y} - p_F(\mathbf{y})$ sont colinéaires.

On a donc $|\langle \mathbf{x} | \mathbf{y} \rangle_F| = \|\mathbf{x}\|_F \cdot \|\mathbf{y}\|_F$ ssi il existe $(\lambda, \mu) \neq (0, 0)$ tels que $\lambda \mathbf{x} + \mu \mathbf{y} \in F$

- 5. (a) E n'est pas réduit à 0, si $\mathbf{a}(\neq 0) \in E$, alors $\mathbf{u} = \frac{1}{\|\mathbf{a}\|}\mathbf{a}$ vérifie $\underline{\mathbf{u}} \in E$ et $\|\mathbf{u}\| = 1$.
 - (b) On a la décomposition de \mathbf{x} selon $E = D \oplus D^{\perp}$ si $\mathbf{x} = a\mathbf{u} + (\mathbf{x} a\mathbf{u})$ avec $\mathbf{x} a\mathbf{u} \in D^{\perp}$. C'est le cas si et seulement si $\langle (\mathbf{x} a\mathbf{u})|\mathbf{u}\rangle = 0$ i.e. $a = \langle \mathbf{x}|\mathbf{u}\rangle$, car $\|\mathbf{u}\|^2 = \langle \mathbf{u}|\mathbf{u}\rangle = 1$. Et donc pour tout $\mathbf{x} \in E$, $p_D(\mathbf{x}) = a\mathbf{u} = \langle \mathbf{x}|\mathbf{u}\rangle\mathbf{u}$.
 - (c) On a pour tout \mathbf{x} , $\sigma_{\mathbf{x}} = \|\mathbf{x}\|_D = \|\mathbf{x} p_D(\mathbf{x})\| = \|\mathbf{x} m_{\mathbf{x}}\mathbf{u}\|$ d'après 3(a). Et pour tout \mathbf{x} , $\mathbf{y} \in E$, $\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x} | \mathbf{y} \rangle_D = \langle \mathbf{x} p_D(\mathbf{x}) | \mathbf{y} p_D(\mathbf{y}) \rangle$ $\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x} | \mathbf{y} p_D(\mathbf{y}) \rangle \langle p_D(\mathbf{x}) | \mathbf{y} p_D(\mathbf{y}) \rangle = \langle \mathbf{x} | \mathbf{y} p_D(\mathbf{y}) \rangle : p_D(\mathbf{x}) \in D, \mathbf{y} p_D(\mathbf{y}) \in D^{\perp}$ $\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x} | \mathbf{y} \rangle \langle \mathbf{x} | p_D(\mathbf{y}) \rangle = \langle \mathbf{x} | \mathbf{y} \rangle \langle \mathbf{x} p_D(\mathbf{x}) | p_D(\mathbf{y}) \rangle \langle p_D(\mathbf{x}) | p_D(\mathbf{y}) \rangle$ $\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x} | \mathbf{y} \rangle \langle p_D(\mathbf{x}) | p_D(\mathbf{y}) \rangle : p_D(\mathbf{y}) \in D, \mathbf{x} p_D(\mathbf{x}) \in D^{\perp}$ Enfin, $\langle p_D(\mathbf{x}) | p_D(\mathbf{y}) \rangle = \langle m_{\mathbf{x}} \mathbf{u} | m_{\mathbf{y}} \mathbf{u} \rangle = m_{\mathbf{x}} m_{\mathbf{y}} \|\mathbf{u}\|$. Et donc pour tout $\mathbf{x}, \mathbf{y} \in E$, $\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle m_{\mathbf{x}} m_{\mathbf{y}}$.
- 6. $\sigma_{\mathbf{x}} = \|\mathbf{x}\|_D \geqslant 0$, il est égal à 0 ssi $\mathbf{x} \in D$ d'après 3.(a). il est donc nul ssi \mathbf{x} et \mathbf{u} sont colinéaires, ce qui est faux. Donc $\sigma_{\mathbf{x}} > 0$ et de même $\sigma_{\mathbf{y}} > 0$

7. (a)
$$\mathbf{x}^* = \frac{\mathbf{x} - m_{\mathbf{x}}\mathbf{u}}{\sigma_{\mathbf{x}}}$$
, donc $m_{\mathbf{x}^*} = \langle \mathbf{x}^* | \mathbf{u} \rangle = \frac{1}{\sigma_{\mathbf{x}}} \left(\langle \mathbf{x} | \mathbf{u} \rangle - m_{\mathbf{x}} \| \mathbf{u} \| \right) = 0$ (par définition)
$$\sigma_{\mathbf{x}^*} = \|\mathbf{x}^* \|_D = \|\mathbf{x}^* - m_{\mathbf{x}^*}\mathbf{u}\| = \|\mathbf{x}^* \| = \frac{1}{|\sigma_{\mathbf{x}}|} \|\mathbf{x} - m_{\mathbf{x}}\mathbf{u}\| = \frac{1}{\sigma_{\mathbf{x}}} \|\mathbf{x} - p_D(\mathbf{x})\| = \frac{\|\mathbf{x}\|_D}{\sigma_{\mathbf{x}}} = \frac{\sigma_{\mathbf{x}}}{\sigma_{\mathbf{x}}} = 1.$$
 Enfin, $\rho = \frac{\text{cov}(\mathbf{x}, \mathbf{y})}{\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}} = \frac{\langle \mathbf{x} | \mathbf{y} \rangle_D}{\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}}$ donc $|\rho| < \frac{\|\mathbf{x}\|_D \cdot \|\mathbf{y}\|_D}{\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}} = 1$ d'après 4.; l'inégalité est stricte car $(\mathbf{x}, \mathbf{y}, \mathbf{u})$ est libre; $\forall (\lambda, \mu) \neq (0, 0), \lambda \mathbf{x} + \mu \mathbf{y} \in D \notin \text{vect}(\mathbf{u}).$ Donc $m_{\mathbf{x}^*} = 0$, que $\sigma_{\mathbf{x}^*} = 1$ et que $\rho \in]-1, 1[$.

- (b) On sait que $\|\mathbf{u}\| = 1$ et $\|\mathbf{x}^*\| = 1$ (dans la chaîne d'égalité de $\sigma_{\mathbf{x}^*}$, question précédente). De plus, on a vu que $\langle \mathbf{u} | \mathbf{x}^* \rangle (= m_{\mathbf{x}^*}) = 0$. Donc la famille $(\mathbf{u}, \mathbf{x}^*)$ est orthonormée, elle est donc libre et $\dim(\operatorname{vect}(\mathbf{u}, \mathbf{x}^*)) = 2$. En outre, $\mathbf{u} \in F$ et $\mathbf{x}^* \in F$ aussi car $\mathbf{x}^* = \frac{1}{\sigma_{\mathbf{x}}} \mathbf{x} - \frac{\mu_{\mathbf{x}}}{\sigma_{\mathbf{x}}} \mathbf{u}$. Donc $\text{vect}(\mathbf{u}, \mathbf{x}^*) \subset F$, et comme ces deux espaces ont la même dimension $2 : \text{vect}(\mathbf{u}, \mathbf{x}^*) = F$. Donc $(\mathbf{u}, \mathbf{x}^*)$ est une base orthonormale de $F = \text{vect}(\mathbf{u}, \mathbf{x})$.
- (c) On applique à $F = \text{vect}(\mathbf{u}, \mathbf{x})$, le résultat de 2. Le minimum est atteint en $\mathbf{z} = p_F(\mathbf{y})$. Puis on a $\inf_{(a,b) \in \mathbb{R}^2} ||\mathbf{y} a\mathbf{x} b\mathbf{u}|| = ||\mathbf{y} p_F(\mathbf{y})|| = d(\mathbf{y}, F)$
- (d) Or comme $(\mathbf{u}, \mathbf{x}^*)$ est une base orthonormée de F, on a $p_F(\mathbf{y}) = \langle \mathbf{y} | \mathbf{u} \rangle \mathbf{u} + \langle \mathbf{y} | \mathbf{x}^* \rangle \mathbf{x}^*$. On remplace: $\inf_{(a,b)\in\mathbb{R}^2} \|\mathbf{y} - a\mathbf{x} - b\mathbf{u}\| = \|\mathbf{y} - m_{\mathbf{y}}\mathbf{u} - \langle \mathbf{y}|\mathbf{x}^*\rangle \mathbf{x}^*\| (\operatorname{car} \langle \mathbf{y}|\mathbf{u}\rangle = m_{\mathbf{y}}).$
- (e) Puis $\sigma_{\mathbf{y}}\mathbf{y}^* = \mathbf{y} m_{\mathbf{y}}\mathbf{u}$, par définition de \mathbf{y}^* , alors que $\sigma_{\mathbf{y}}\rho = \frac{\operatorname{cov}(\mathbf{x}, \mathbf{y})}{\sigma_{\mathbf{x}}} = \frac{1}{\sigma_{\mathbf{x}}} \langle \mathbf{x} | \mathbf{y} \rangle_{D} = \frac{1}{\sigma_{\mathbf{x}}} \langle \mathbf{x} - p_{D}(\mathbf{x}) | \mathbf{y} - p_{D}(\mathbf{y}) \rangle = \langle \frac{\mathbf{x} - m_{\mathbf{x}} \mathbf{u}}{\sigma_{\mathbf{x}}} | \mathbf{y} - p_{D}(\mathbf{y}) \rangle$ $= \langle \mathbf{x}^{*} | \mathbf{y} - p_{D}(\mathbf{y}) \rangle = \langle \mathbf{x}^{*} | \mathbf{y} \rangle - \langle \mathbf{x}^{*} | p_{D}(\mathbf{y}) \rangle = \langle \mathbf{x}^{*} | \mathbf{y} \rangle \operatorname{car} \langle \underbrace{\mathbf{x}^{*}}_{\in D} | \underbrace{p_{D}(\mathbf{y})}_{\in D} \rangle = 0$

Donc (en remplaçant) $\inf_{(a,b)\in\mathbb{R}^2} \lVert \mathbf{y} - a\mathbf{x} - b\mathbf{u}\rVert = \sigma_{\mathbf{y}} \lVert \mathbf{y}^* - \rho \mathbf{x}^*\rVert$

- (f) $\sigma_{\mathbf{y}}(\mathbf{y}^* \rho \mathbf{x}^*) = \mathbf{y} m_{\mathbf{y}} \mathbf{u} \frac{\rho \sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}} \mathbf{x} + \frac{\rho \sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}} m_{\mathbf{x}} \mathbf{u}.$ Donc $a_0 = \frac{\rho \sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}}$ et $b_0 = m_{\mathbf{y}} \frac{\rho \sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}} m_{\mathbf{x}} = \frac{\sigma_{\mathbf{x}} m_{\mathbf{y}} \rho \sigma_{\mathbf{y}} m_{\mathbf{x}}}{\sigma_{\mathbf{x}}}$
- 8. On a donc $y = \frac{\rho \sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}} x + m_{\mathbf{y}} \frac{\rho \sigma_{\mathbf{y}} m_{\mathbf{x}}}{\sigma_{\mathbf{x}}}$, donc \mathcal{D}_0 a pour équation $\frac{y m_{\mathbf{y}}}{\sigma_{\mathbf{y}}} = \rho \frac{x m_{\mathbf{x}}}{\sigma_{\mathbf{x}}}$.
- 9. L'unicité est assuré par le fait que ce minimum est atteint en $z = p_{F'}(\mathbf{x})$ où $F' = \text{vect}(\mathbf{u}, \mathbf{y})$. La même série de calcul qu'en 7. mais avec une inversion $\mathbf{x} \leftrightarrow \mathbf{y}$ donne and solve the case $a_1 = \frac{\rho \sigma_{\mathbf{x}}}{\sigma_{\mathbf{y}}}$ et $b_1 = m_{\mathbf{x}} - \frac{\rho \sigma_{\mathbf{x}}}{\sigma_{\mathbf{y}}} m_{\mathbf{y}} = \frac{\sigma_{\mathbf{y}} m_{\mathbf{x}} - \rho \sigma_{\mathbf{x}} m_{\mathbf{y}}}{\sigma_{\mathbf{y}}}$.
- 10. On a donc (de même avec l'inversion $x \leftrightarrow y$): \mathcal{D}_1 a pour équation $\frac{x m_{\mathbf{x}}}{\sigma_{\mathbf{x}}} = \rho \cdot \frac{y m_{\mathbf{y}}}{\sigma_{\mathbf{y}}}$
- 11. Les droites se coupent en un seul point ssi les coefficients directeurs sont différents. Celui de \mathcal{D}_0 vaut $\frac{\rho \sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}}$, celui de \mathcal{D}_1 vaut $\frac{\sigma_{\mathbf{y}}}{\rho \sigma_{\mathbf{x}}}$. Ce sont les mêmes si $\rho^2 = 1$. Ce qui est faux car $\rho \in]-1,1[$. Les droites se coupent donc en un seul point.

Soit $M(m_{\mathbf{x}}, m_{\mathbf{y}})$, alors les coordonnées de M vérifient les équations de \mathcal{D}_0 et de \mathcal{D}_1 . M de coordonnées $(m_{\mathbf{x}}, m_{\mathbf{y}})$ est donc l'unique point d'intersection de \mathcal{D}_0 et de \mathcal{D}_1

12. Les droites sont orthogonales

ssi le produit des coefficients directeurs vaut -1 ou si l'un est nul et l'autre infini.

Or ce produit vaut : $\frac{\rho \sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}} \times \frac{\sigma_{\mathbf{y}}}{\rho \sigma_{\mathbf{x}}} = \frac{\sigma_{\mathbf{y}}^2}{\sigma_{\mathbf{x}}^2} > 0$, donc jamais égal à -1.

ou bien il suffit que $\rho = 0$ (le premier coefficient serait nul et le second infini). ou bien $\sigma_{\mathbf{x}} = 0$ (premier coefficient infini), mais le second ne serait pas nul.

Par conséquent, les droites \mathcal{D}_0 et \mathcal{D}_1 sont orthogonales $\iff \rho = 0$ $\iff \operatorname{cov}(\mathbf{x}, \mathbf{y}) = 0 \iff \langle \mathbf{x} | \mathbf{y} \rangle = m_{\mathbf{x}} m_{\mathbf{y}} \operatorname{car} \operatorname{cov}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x} | \mathbf{y} \rangle - m_{\mathbf{x}} m_{\mathbf{y}}.$

II. Base adaptée à un produit scalaire dans un espace euclidien

1. Il suffit de comparer les deux résultats.

On a $\langle \mathbf{x} | \mathbf{y} \rangle = \langle \sum_{i=1}^{n} x_i \mathbf{e}_i | \sum_{j=1}^{n} y_j \mathbf{e}_j \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j \langle \mathbf{e}_i | \mathbf{e}_j \rangle$ par bilinéarité.

Par ailleurs, SY produit d'une matrice carrée par une matrice colonne est une matrice colonne,

en notant i, l'indice d'un nombre située en i-ième position (ligne), on a $(SY)_i = \sum_{k=1}^n s_{i,k} y_k$. puis XSY est un nombre qui vaut $\sum_{i=1}^{n} x_i(SY)_i = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j s_{i,j}$. Or pour tout $i, j, s_{i,j} = \langle \mathbf{e}_i | \mathbf{e}_j \rangle$, donc pour tout $(\mathbf{x}, \mathbf{y}) \in E_n^2$, $\langle \mathbf{x} | \mathbf{y} \rangle = XSY$ si $S = (\langle \mathbf{e}_i | \mathbf{e}_j \rangle)_{(i,j) \in \{1, \dots n\}^2}$.

2. (a) Soit S est associée à $\mathcal B$

le produit scalaire est symétrique, i.e. pour tout $i, j, s_{i,j} = \langle \mathbf{e}_i | \mathbf{e}_j \rangle = \langle \mathbf{e}_j | \mathbf{e}_i \rangle = s_{j,i}$. Donc S est une matrice symétrique. Elle est évidemment carrée d'ordre n.

S est symétrique réelle (E_n euclidien donc réel), donc toute ses valeurs propres sont réels. Soit $\lambda \in \mathbb{R}$, une valeur propre de S et X un vecteur propre (réel) associé (non nul).

Alors
$$SX = \lambda X$$
 et donc $||x||^2 = {}^t X SX = \lambda {}^t X X = \lambda n(X)$ où $n(X) = \sum_{i=1}^n x_i^2 > 0$.

Donc $\lambda = \frac{\|x\|^2}{n(X)} > 0$. Ainsi <u>le spectre de S dans \mathbb{C} est inclus dans \mathbb{R}_+^* .</u>

- (b) S est diagonale ssi pour tout $i \neq j$, $s_{i,j} = 0 = \langle \mathbf{e}_i | \mathbf{e}_j \rangle$. Donc S est diagonale ssi la base \mathcal{B} est orthogonale (mais non nécessairement ortho<u>normée</u>).
- 3. Si $X = (x_i)_i$, $Y = (y_j)_j$ et $A = (a_{i,j})$, on a ${}^t X A Y = \sum_{k,h=1}^n x_k a_{k,h} y_h$.

Donc avec $X = E_i$ et $Y = E_j$ (matrice colonnes avec le 1 en *i*-ieme position resp. *j*-ieme), on a ${}^tXAY = {}^tE_iAE_j = a_{i,j}$ car $x_k = 0$ si $k \neq i$ et $y_h = 0$ si $h \neq j$. et de même ${}^{t}XBY = {}^{t}E_{i}BE_{j} = b_{i,j}$.

Donc comme pour tout $X \in M_{n,1}(\mathbb{R})$ et $Y \in M_{n,1}(\mathbb{R})$, ${}^tXAY = {}^tXBY$, on a $\forall i, j \in \mathbb{N}_n$, $a_{i,j} = b_{i,j}$ i.e. $\underline{A} = \underline{B}$

- 4. (a) Formule du cours à connaître : $M_{\mathcal{B}}(\mathbf{x}) = P_{\mathcal{B}}^{\mathcal{B}'} \times M_{\mathcal{B}'}(\mathbf{x})$ donc $X = P \times X'$.

(b) On a exactement la même relation qu'en 1. : pour tout
$$(\mathbf{x}, \mathbf{y}) \in E_n^2$$
, $\langle \mathbf{x} | \mathbf{y} \rangle = {}^t\!\! X' S' Y'$ si $S = \left(\langle \mathbf{e}_i' | \mathbf{e}_j' \rangle \right)_{(i,j) \in \{1,\dots n\}^2}$.

On a donc ${}^{t}X'S'Y' = {}^{t}XSY$.

Or $X = P \times X'$, donc ${}^t X = {}^t X' \times {}^t P$ et de même $Y = P \times Y'$.

Donc pour tout $X', Y', {}^tX'S'Y' = {}^tX'({}^tPSP)Y$ et donc d'après 3. : $\underline{S'} = {}^tPSP$.

(c) Il s'agit exactement de la condition \mathcal{B}' est orthonormée. Or tout espace euclidien admet une base orthonormée. Donc il existe bien une base \mathcal{B}' de E_n

telle que, pour tout
$$(\mathbf{x}, \mathbf{y}) \in E_n^2$$
, $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i' y_i'$ si $\mathbf{x} = \sum_{i=1}^n x_i' \mathbf{e}_i'$ et $\mathbf{y} = \sum_{i=1}^n y_i' \mathbf{e}_i'$

- (d) Une matrice P est orthogonale si elle transforme toute base orthonormée en une autre. Or \mathcal{B}' est orthonormée. Donc P est orthogonale ssi \mathcal{B} est orthonormée.
- 5. Soit $(\mathbf{e}_i)_{i\in\mathbb{N}_n}$ une base orthogonale telle que $\langle \mathbf{e}_i|\mathbf{e}_i\rangle=d_i$.

Une telle base existe, il suffit de prendre une base (\mathbf{e}'_i) orthonormée de E_n

puis de considérer $\mathbf{e}_i = \sqrt{d_i} \mathbf{e}_i'$, alors $\langle \mathbf{e}_i | \mathbf{e}_j \rangle = 0$ si $i \neq j$ et $\langle \mathbf{e}_i | \mathbf{e}_i \rangle = (\sqrt{d_i})^2 \langle \mathbf{e}_i' | \mathbf{e}_i' \rangle = d_i$.

Alors M_1 est associée à la base $(\mathbf{e}_i)_{i\in\mathbb{N}_n}$

6. Soit
$$M_3 = \mathcal{M}_{\mathcal{B}}(f_3) = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$
.

(a) Notons que M_3 est symétrique réelle donc diagonalisable.

Le polynôme caractéristique de M_3 (donc de f_3) est

$$\chi(\lambda) = \det(M_3 - \lambda I_3) = (3 - \lambda)^3 - 1 - 1 - 3 \times (3 - \lambda) \times (-1)^2 = 16 - 24\lambda + 9\lambda^2 - \lambda^3$$

$$\chi(\lambda) = (1 - \lambda)(16 - 8\lambda + \lambda^2) = (1 - \lambda)(4 - \lambda)^2.$$

Donc les valeurs propres de f_3 sont 1 et 4 (double)

Cherchons les espaces propres associés.

- Soit
$$(x, y, z) \in E_1$$
 alors
$$\begin{cases} 2x & -y & -z & = 0 \\ -x & +2y & -z & = 0 \\ -x & -y & +2z & = 0 \end{cases} \Leftrightarrow \begin{cases} y = x \\ z = x \end{cases} \text{ Donc } E_1 = \text{vect}((1, 1, 1)).$$
Il faut l'orthonormaliser : $\|(1, 1, 1)\| = \sqrt{3}$, donc $E_1 = \text{vect}((\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}))$

Il faut l'orthonormaliser :
$$\|(1,1,1)\| = \sqrt{3}$$
, donc $E_1 = \text{vect}((\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}))$

— Soit $(x,y,z) \in E_4$ alors
$$\begin{cases} -x & -y & -z & = 0 \\ -x & -y & -z & = 0 \\ -x & -y & -z & = 0 \end{cases} \Leftrightarrow \begin{cases} x = -y - z & \text{Donc } E_4 = \text{vect}((-1,1,0), (-1,0,1)). \end{cases}$$

Il faut l'orthonormaliser : $\|(-1,1,0)\| = \sqrt{2}$, puis pour second vecteur, on peut prendre le produit vectoriel de $(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ par $(\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$ i.e. $(\frac{-1}{\sqrt{6}},\frac{-1}{\sqrt{6}},\frac{2}{\sqrt{6}})$. Ainsi $E_4 = \text{vect}((\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(\frac{-1}{\sqrt{6}},\frac{-1}{\sqrt{6}},\frac{2}{\sqrt{6}}))$

(b) Notons $D_3 = \operatorname{diag}(1,4,4)$, alors d'après 5, D_3 est une matrice associée à une base de E_3 : la base $\mathcal{B}_1 = ((\mathbf{e}_1,2\mathbf{e}_2,2\mathbf{e}_3))$ où $\mathbf{e}_1 = (\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$, $\mathbf{e}_2 = (\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$ et $\mathbf{e}_3 = (\frac{-1}{\sqrt{6}},\frac{-1}{\sqrt{6}},\frac{2}{\sqrt{6}})$. Puis : $M_3 = PD_3{}^tP$ où P est la matrice de passage orthogonale. D'où ${}^tXM_2Y = {}^t({}^tPX)D_3({}^tPY)$. Ainsi, l'écriture $X' = {}^{t} P \times X$ correspond à celle d'une base adaptée pour D_3 .

Par conséquent : la transformation par $P = ({}^{t}P)^{-1}$ de la base \mathcal{B}_{1} donne une base adaptée à M_{3} .

- 7. (a) Il s'agit d'une famille libre, car orthogonale De plus, elle est composée de n éléments, donc toute famille adaptée est une base de E_n .
 - (b) En fait, une base adaptée est une base associée à la matrice $\frac{1}{n}I_n$. Comme pour la question 5, une base adaptée existe donc toujours

- (c) Si $\mathcal{B}_1 = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ est une base adaptée, alors $\mathcal{B}_2 = (-\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ est aussi adaptée. Donc E_n n'admet pas une unique base adaptée
- (d) Par bilinéarité, on a $\langle \mathbf{x} | \mathbf{y} \rangle = \sum_{i=1}^{n} \sum_{i=1}^{n} x_i y_j \langle \mathbf{e}_i | \mathbf{e}_j \rangle = \sum_{i=1}^{n} x_i y_i \langle \mathbf{e}_i | \mathbf{e}_i \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$

(e) Notons
$$\mathbf{x} = \sum_{i=1}^{n} \mathbf{e}_i$$
, alors $\|\mathbf{x}\| = \langle \mathbf{x} | \mathbf{x} \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \frac{1}{n} \sum_{i=1}^{n} 1^2 = 1$

III. Droites des moindres carrés dans le cas général

- 1. Il s'agit de l'existence de la base adaptée de la partie précédente.
- 2. Rappelons que les points (A_i) ne sont pas alignés.

Soit $\alpha, \beta, \gamma \in \mathbb{R}$ tels que $\alpha \mathbf{u} + \beta \mathbf{x} + \gamma \mathbf{y} = 0$.

donc pour tout $i \in \mathbb{N}_n$, $\alpha 1 + \beta x_i + \gamma y_i = 0$.

Et par conséquent, tous les points A_i se trouve sur la droite d'équation $\beta x + \gamma y + \alpha = 0$, ils sont donc tous alignés (si cette droite n'est pas vide).

Ce qui est faux, donc nécessairement, il faut que $\alpha = \beta = \gamma = 0$ (« droite vide »).

Par conséquent, $(\mathbf{u}, \mathbf{x}, \mathbf{y})$ est une famille libre de E_n .

3. $\mathcal{D}_{a,b}$ est la droite d'équation y=ax+b. Et $p_{a,b}(A_i)$ a la même abscisse que A_i c'est-à-dire x_i et donc ordonnée $y_i=ax_i+b$.

Puis
$$\|\overline{p_{a,b}(A_i)A_i}\|_2^2 = (x_i - x_i)^2 + (y_i - ax_i + b)^2$$
.

Donc
$$f_0(a,b) = \sum_{i=1}^n \|\overrightarrow{p_{a,b}(A_i)A_i}\|_2^2 = \sum_{i=1}^n (y_i - ax_i + b)^2.$$

Alors que
$$\|\mathbf{y} - a\mathbf{x} - b\mathbf{u}\|^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - ax_i + b\mathbf{1})^2$$
.

Finalement, on a bien pour tout $(a, b) \in \mathbb{R}^2$, $f_0(a, b) = \sum_{i=1}^n (y_i - ax_i + b)^2 = n ||\mathbf{y} - a\mathbf{x} - b\mathbf{u}||^2$.

Et de même
$$f_1(a,b) = \sum_{i=1}^{n} (x_i - ay_i + b)^2 = n \|\mathbf{x} - a\mathbf{y} - b\mathbf{u}\|^2$$
.

4. (a) n est indépendant de (a, b), donc pour minimiser f_0 , il suffit de minimiser $\|\mathbf{y} - a\mathbf{x} - b\mathbf{u}\|^2$ et donc de faire la projection orthogonale de \mathbf{y} sur $F = \text{vect}(\mathbf{u}, \mathbf{x})$.

Il existe alors une unique solution (a_0, b_0) qui vérifie $p_F(\mathbf{y}) = a_0 \mathbf{x} + b_0 \mathbf{u}$.

De même il existe une unique solution (a_1, b_1) qui minimise f_1 et qui vérifie $p_G(\mathbf{x}) = a_1 \mathbf{y} + b_1 \mathbf{u}$ où $G = \text{vect}(\mathbf{u}, \mathbf{y})$ - cf. partie I.

(b) Nous avons vu (I.11) que les droites se coupent en un unique point de coordonnée (m_x, m_y) .

Or
$$m_{\mathbf{x}} = \langle \mathbf{x} | \mathbf{u} \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 et $m_{\mathbf{y}} = \langle \mathbf{y} | \mathbf{u} \rangle = \frac{1}{n} \sum_{i=1}^{n} y_i$.

Il s'agit exactement des coordonnées de l'isobary centre des points $(A_0,A_1,\dots A_n)$

(c) D'après la fin de la partie I, ces droites sont orthogonales ssi $\langle \mathbf{x} | \mathbf{y} \rangle = m_{\mathbf{x}} m_{\mathbf{y}}$.

Or
$$\langle \mathbf{x} | \mathbf{y} \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$
 et $m_{\mathbf{x}} = \langle \mathbf{x} | \mathbf{u} \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$ (rappel : $u_i = 1$).

Donc ces droites sont orthogonales ssi $\frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i}=\frac{1}{n^{2}}\sum_{i=1}^{n}x_{i}\sum_{i=1}^{n}y_{i}$.

Et nous avons vu que dans ce cas, aux équations des droites sont associés les nombres $a_0 = \frac{\rho \sigma_y}{\sigma_x} = 0$ et $\frac{1}{a_1} = \infty$ donc $a_1 = 0$.

Finalement, on obtient les droites \mathcal{D}_0 d'équation $y = b_0 = m_{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} y_i$ et \mathcal{D}_1 d'équation

$$x = b_1 = m_{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i, \text{à la condition nécessaire et suffisante} : \sum_{i=1}^{n} x_i y_i = \frac{1}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i$$

(d) Prenons $A_1 = (-1, -1), A_2 = (-1, 1), A_3 = (1, 1)$ et $A_4 = (1, -1)$.

$$\sum_{i=1}^{n} x_i y_i = 1 + (-1) + 1 + (-1) = 0 \text{ et } \frac{1}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i = \frac{1}{n} (-1 - 1 + 1 + 1) (-1 + 1 + 1 - 1) = 0.$$

Les droites des moindres carrées ont pour équations $\mathcal{D}_0: y=0$ et $\mathcal{D}_1: x=0$, elles sont bien orthogonales.