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Définition
Dans tout le chapitre, m,n, p, q sont des entiers naturels non
nuls et K=R ou C (on pourrait plus généralement considérer que
K est un corps (commutatif)).

Définition - Matrices

Une matrice à n lignes et p colonnes à coefficients dans K est
une famille (ai j)1ÉiÉn

1É jÉp
d’éléments de K indexée par

[[1,n]]× [[1, p]] (ou matrice de type (n, p) ou de matrice n× p).
On note Mn,p(K) l’ensemble des matrices à n lignes et p
colonnes à coefficients dans K. Si A ∈Mn,p(K),

A =


a11 a12 · · · a1p
a21 a22 · · · a2p

...
...

...
...

an1 an2 · · · anp

= (ai j)1ÉiÉn;1É jÉp = (ai, j)1ÉiÉn
1É jÉp

ai j est le coefficient de la i-ième ligne, j-ième colonne.
Deux matrices A et B sont donc égales si elles ont même nombre
de lignes, même nombre de colonnes et mêmes coefficients.
Si n = p on note Mn(K) l’ensemble des matrices carrées d’ordre
n.
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Exemple

Exemple Premier exemple

(i− j)1ÉiÉ2
1É jÉ3

=
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Cas particuliers

Quelques cas particuliers

Quelques matrices « de référence » sont à connaître :

Ï La matrice nulle de Mn,p(K) est la matrice qui ne contient
que des coefficients nuls :

(0)1ÉiÉn
1É jÉp

= (0)=On,p

Ï si n = 1, on dit que A = (
a1 . . . ap

)
est une matrice ligne.

Ï si p = 1, B =

b1
...

bn

 est appelée matrice colonne.
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Cas particuliers
Quelques cas particuliers

Quelques matrices joueront un rôle particulier :

Ï La matrice identité de Mn(K) est la matrice In qui possède
des 1 sur la diagonale et des 0 en dehors de la diagonale :

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

= (ai j)1ÉiÉn
1É jÉn

= (ai j)1Éi, jÉn

où ai j = 0 si i ̸= j et aii = 1 pour i = 1 à n.

Ï une matrice diagonale est une matrice carrée dont seuls les
éléments diagonaux sont non nuls :

diag(a11, . . . ,ann)=


a11 0 · · · · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

 (i ̸= j ⇒ ai j = 0)

Ainsi In = diag(1,1, . . .1︸ ︷︷ ︸
n

).
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Quelques cas particuliers

Parmi les matrices carrées d’ordre n, quelques matrices joueront
un rôle particulier :

Ï une matrice scalaire est une matrice diagonale dont tous les
éléments sont identiques :

λ 0 · · · · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ

 (i ̸= j ⇒ ai j = 0 et aii = a j j =λ)

Ï une matrice triangulaire supérieure est une matrice carrée
dont les éléments au-dessous de la diagonale sont nuls :

Ï une matrice triangulaire inférieure est une matrice carrée
dont les éléments au-dessus de la diagonale sont nuls.
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Quelques cas particuliers

Parmi les matrices carrées d’ordre n, quelques matrices joueront
un rôle particulier :

Ï une matrice scalaire est une matrice diagonale dont tous les
éléments sont identiques :

Ï une matrice triangulaire supérieure est une matrice carrée
dont les éléments au-dessous de la diagonale sont nuls :

a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

 (i > j ⇒ ai j = 0);

Ï une matrice triangulaire inférieure est une matrice carrée
dont les éléments au-dessus de la diagonale sont nuls.
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Quelques cas particuliers

Parmi les matrices carrées d’ordre n, quelques matrices joueront
un rôle particulier :

Ï une matrice scalaire est une matrice diagonale dont tous les
éléments sont identiques :

Ï une matrice triangulaire supérieure est une matrice carrée
dont les éléments au-dessous de la diagonale sont nuls :

Ï une matrice triangulaire inférieure est une matrice carrée
dont les éléments au-dessus de la diagonale sont nuls.

a11 0 · · · · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0

...
...

...
. . .

...
an1 an2 an3 · · · ann

 (i < j ⇒ ai j = 0);
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Addition

Définition - Addition de deux matrices de même taille

La somme de deux matrices A = (ai j)1ÉiÉn
1É jÉp

et B = (bi j)1ÉiÉn
1É jÉp

de

Mn,p(K) est la matrice définie par la formule suivante :

A+B = (ai j +bi j)1ÉiÉn
1É jÉp

,

on ajoute les coefficients qui ont la même position.
Il s’agit d’une loi interne sur Mn,p(K).

Application Exemple



Leçon 48 - Calcul
matriciel

⇒ (Mn,p , ·,+)
espace vectoriel

⇒ Produit de deux
matrices

1. Problèmes

2. Espace vectoriel
Mn,p (K)

2.1. Ensemble des matrices

2.2. Opérations + et ·
2.3. Transposition

3. Multiplication
matricielle

3.1. Définition

3.2. Système

Addition

Définition - Addition de deux matrices de même taille

La somme de deux matrices A = (ai j)1ÉiÉn
1É jÉp

et B = (bi j)1ÉiÉn
1É jÉp

de

Mn,p(K) est la matrice définie par la formule suivante :

A+B = (ai j +bi j)1ÉiÉn
1É jÉp

,

on ajoute les coefficients qui ont la même position.
Il s’agit d’une loi interne sur Mn,p(K).

Application Exemple



Leçon 48 - Calcul
matriciel

⇒ (Mn,p , ·,+)
espace vectoriel

⇒ Produit de deux
matrices

1. Problèmes

2. Espace vectoriel
Mn,p (K)

2.1. Ensemble des matrices

2.2. Opérations + et ·
2.3. Transposition

3. Multiplication
matricielle

3.1. Définition

3.2. Système

Addition

Analyse Groupe (Mn,p(K),+)

Le théorème suivant en découle :

Théorème - Le groupe (Mn,p(K),+)

L’ensemble Mn,p(K) muni de l’addition + est donc un groupe
commutatif, d’élément neutre la matrice nulle de Mn,p(K).



Leçon 48 - Calcul
matriciel

⇒ (Mn,p , ·,+)
espace vectoriel

⇒ Produit de deux
matrices

1. Problèmes

2. Espace vectoriel
Mn,p (K)

2.1. Ensemble des matrices

2.2. Opérations + et ·
2.3. Transposition

3. Multiplication
matricielle

3.1. Définition

3.2. Système

Addition

Analyse Groupe (Mn,p(K),+)
Le théorème suivant en découle :

Théorème - Le groupe (Mn,p(K),+)

L’ensemble Mn,p(K) muni de l’addition + est donc un groupe
commutatif, d’élément neutre la matrice nulle de Mn,p(K).



Leçon 48 - Calcul
matriciel

⇒ (Mn,p , ·,+)
espace vectoriel

⇒ Produit de deux
matrices

1. Problèmes

2. Espace vectoriel
Mn,p (K)

2.1. Ensemble des matrices

2.2. Opérations + et ·
2.3. Transposition

3. Multiplication
matricielle

3.1. Définition

3.2. Système

Multiplication par un scalaire

Définition - Multiplication par un scalaire

Le produit d’une matrice A de Mn,p(K) par α ∈K est la matrice
notée αA définie par :

α(ai j)1ÉiÉn
1É jÉp

= (αai j)1ÉiÉn
1É jÉp

.

On définit ainsi une loi externe sur Mn,p(K) à domaine
d’opérateur K
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Multiplication par un scalaire

Et on vérifie facilement les propriétés suivantes :

Proposition - Propriétés de la multiplication scalaire

•1A = A
•α(βA)= (αβ)A
•(α+β)A =αA+βA,
•α(A+B)=αA+αB.
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Espace vectoriel de dimension finie

Analyse Pour définir explicitement, sans quiproquo, une matrice,
il faut. . .

Théorème - L’espace vectoriel (Mn,p(K),+, .)

(Mn,p(K),+, .) est un K-e.v de dimension np.
La base canonique est formée par les n× p matrices Ekℓ
(1É k É n;1É ℓÉ p) où Ekℓ est la matrice ne contenant que des
0 sauf l’élément d’indices k,ℓ qui vaut 1, soit

Ekℓ = (δkiδ jℓ)1ÉiÉn
1É jÉp

On a donc dimKMn,p(K)= n× p.
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Espace vectoriel de dimension finie

Savoir-faire. Notation

Par la suite, on notera i[A] j ou Coefi, j(A), le coefficient en ligne
i et colonne j de la matrice A.
On a donc

i[λA+µB] j =λi[A] j +µi[B] j

Coefi, j(λA+µB)=λCoefi, j(A)+µCoefi, j(B)

∀ i, j, i[·] j ou Coefi, j est une application linéaire de Mn,p(K)

On notera également L i(A) (respectivement C j(A)), la ligne i
(respectivement colonne j) de la matrice A.
On notera que i[AB] j = L i(A)×C j(B), quand on verra le produit
matriciel. C’est un nombre.
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Définition

Définition - Matrice transposée

Soit A = (ai j)1ÉiÉn,1É jÉp ∈Mn,p(K),
on définit la transposée de A, notée t A ou AT par

∀ i É p, j É n : i[AT ] j = (i[t A] j =) j[A]i

On a AT ∈Mp,n(K).

La transposée d’une matrice s’obtient en “échangeant” lignes et
colonnes
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Exemple et propritété

Exemple Matrice 3×4

Théorème - Isomorphisme

Sous réserve que la taille des matrices permette d’effectuer les
différentes opérations, on a :

(A+B)T = AT +BT ; (λ · A)T =λ · AT ; (AT )
T = A

La transposition est donc un isomorphisme (=application linéaire
bijective) entre les espaces vectoriels Mn,p(K) et Mp,n(K).

Exercice
Faire la démonstration
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Définition

Définition - Produit de deux matrices

Le produit d’une matrice A = (ai j)1ÉiÉn
1É jÉp

de Mn,p(K) par une

matrice B = (bi j)1ÉiÉp
1É jÉq

de Mp,q(K) est une matrice de Mn,q(K)

définie par
C = AB = (ci j)1ÉiÉn

1É jÉq

où

ci j = ai1b1 j +ai2b2 j + . . .+aipbp j =
p∑

k=1
aikbk j.
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Savoir-faire : LA formule

Savoir-faire. Notation

On note Coefi, j(A) ou i[A] j, le coefficient en ligne i et colonne j
de la matrice A. On a donc

Coefi, j(AB)=
p∑

k=1
Coefi,k(A)×Coefk, j(B)

i[AB] j =
p∑

k=1

i[A]k
k[B] j

comme si
∑

k . . . ]k
k[· · · =;.

Il faut savoir passer d’un sens vers un autre.

Attention. Taille des matrices

On ne peut pas multiplier une matrice de M3,4(K) avec une
matrice de M5,6(K) ! Il faut que le nombre de colonnes de la
première matrice soit égal au nombre de lignes de la seconde.



Leçon 48 - Calcul
matriciel

⇒ (Mn,p , ·,+)
espace vectoriel

⇒ Produit de deux
matrices

1. Problèmes

2. Espace vectoriel
Mn,p (K)

2.1. Ensemble des matrices

2.2. Opérations + et ·
2.3. Transposition

3. Multiplication
matricielle

3.1. Définition

3.2. Système

Savoir-faire : LA formule

Savoir-faire. Notation

On note Coefi, j(A) ou i[A] j, le coefficient en ligne i et colonne j
de la matrice A. On a donc

Coefi, j(AB)=
p∑

k=1
Coefi,k(A)×Coefk, j(B)

i[AB] j =
p∑

k=1

i[A]k
k[B] j

comme si
∑

k . . . ]k
k[· · · =;.

Il faut savoir passer d’un sens vers un autre.

Attention. Taille des matrices

On ne peut pas multiplier une matrice de M3,4(K) avec une
matrice de M5,6(K) ! Il faut que le nombre de colonnes de la
première matrice soit égal au nombre de lignes de la seconde.



Leçon 48 - Calcul
matriciel

⇒ (Mn,p , ·,+)
espace vectoriel

⇒ Produit de deux
matrices

1. Problèmes

2. Espace vectoriel
Mn,p (K)

2.1. Ensemble des matrices

2.2. Opérations + et ·
2.3. Transposition

3. Multiplication
matricielle

3.1. Définition

3.2. Système

Savoir-faire : présentation des calculs

Présentation des calculs

Une méthode pratique de présentation des calculs :



...
...

...
...

...
...

...
...

ai1 ai2 . . . aip
...

...
...

...
...

...
...

...




. . . . . . b1 j . . .
. . . . . . b2 j . . .
...

...
...

...
. . . . . . bp j . . .





...
...

...
...

...
...

...
...

. . . . . . ci j . . .
...

...
...

...
...

...
...


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Applications

Application Produit de deux matrices

Exemple Petits calculs

Soient A =
(
2 −3 −4
3 1 5

)
et B =

 3 −3 2
−1 5 −2
−1 3 0

.

Calculer, si cela est possible, AB,BA, A2,B2.
Exercice
Simplifier le produit

n∑
h=1

n∑
ℓ=1

n∑
j=1

aℓ, jbi,hch,ℓd j,m
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Applications

Analyse Multiplication par une matrice colonne
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Système et calcul matriciel

Proposition - (S)⇔ AX = B

L’équation AX = B pour des matrices est une manière compacte
d’écrire un système linéaire général avec n équations, p

inconnues et un second membre B =

b1
...

bn



(S)


a11x1 + . . . +a1pxp = b1
a21x1 + . . . +a2pxp = b2
... + + ... = ...

an1x1 + . . . +anpxp = bn.

Nous reviendrons sur ce parallèle lorsque nous prendrons le
temps de résoudre des systèmes linéaires.
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Conclusion

Objectifs
⇒ Ensemble des matrices comme un espace vectoriel
⇒ Produit de deux matrices bien calibrées

Pour la prochaine fois

Ï Lecture du cours : chapitre 8. Calcul matriciel
3. Multiplication
4. Les matrices carrées

Ï Exercice N° 132

Ï TD :
- jeudi 8h : 329, 326 / 119, 120 a,c,d, 121, 124
- jeudi 10h : 330, 332 / 117, 118, 120 b,e, 123, 125
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Ï Si le nombre de colonne de A égale le nombre de lignes de B
(égale m), on définit A×B, par

i[A×B] j =
m∑

k=1

i[A]k
k[B] j

Ï Nombreuses interprétations. . . dont (S)⇔ AX = b (avec X et b
colonnes)

Ï Propriétés : associativité, bilinéarité (groupe?), transposition

Ï Produit E i, j ×Fk,ℓ

Pour la prochaine fois
Ï Lecture du cours : chapitre 8. Calcul matriciel

3. Multiplication
4. Les matrices carrées
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Ï TD :
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Pour la prochaine fois
Ï Lecture du cours : chapitre 8. Calcul matriciel

3. Multiplication
4. Les matrices carrées

Ï Exercice N° 132
Ï TD :

- jeudi 8h : 329, 326 / 119, 120 a,c,d, 121, 124
- jeudi 10h : 330, 332 / 117, 118, 120 b,e, 123, 125
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