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= Lensemble des matrices, vu comme un espace vectoriel
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Problemes

Probléme Pourquoi des matrices ?
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Legon 48 - Calcul

P I’O blé m eS matriciel

= (Mn,p, +)

Probléme Pourquoi des matrices ? CPEERNEERE
= Produit de deux
matrices

Probléme Pourquoi un tel produit ?
Comment justifier : 1. Problemes

[AB]; j = Z [A]; x[Blg,;
k=1



Problemes

Probléme Pourquoi des matrices ?

Probléme Pourquoi un tel produit ?

Comment justifier :

[AB]; ; =

Probléme Racines carrées
Quelle matrice A telle que

A% =

n

o O

[A]; x[Blg,;
k=1

o O
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Problemes

Probléme Anneau non commutatif des matrices
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Problemes

Probléme Anneau non commutatif des matrices

Probléme Matrices inversibles
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= Lensemble des matrices, vu comme un espace vectoriel

= Produit de deux matrices bien calilbrées

1. Problémes

2. Espace vectoriel 4, p(K)
2.1. Ensemble des matrices

3. Multiplication matricielle
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Définition
Dans tout le chapitre, m,n, p, g sont des entiers naturels non

nuls et K =R ou C (on pourrait plus généralement considérer que
K est un corps (commutatif)).
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Définition
Définition - Matrices

Une matrice a n lignes et p colonnes a coefficients dans K est

une famille (a;;)1<;<n d’éléments de K indexée par
1sjsp

[1,2]1 %01, pl (ou matrice de type (n, p) ou de matrice n x p).
On note ., ,(IK) 'ensemble des matrices a n lignes et p
colonnes a coefficients dans K. Si A € ./, ,(K),

a1 ag aip
ag] ags agp
A=| . . . | =(e)i<isni<i<p = (@ j)i<i<n
. : . : 1sjsp
Qnl QAp2 "°  Qnp

a;; est le coefficient de la i-iéme ligne, j-ieme colonne.

Deux matrices A et B sont donc égales si elles ont méme nombre

de lignes, méme nombre de colonnes et mémes coefficients.

Si n = p on note .4, (IK) 'ensemble des matrices carrées d’ordre

n.
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Exemple

Exemple Premier exemple

(I—J<i<2 =
1</<3
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Legon 48 - Calcul

Cas particuliers matrice

= (n,p,,+)
espace vectoriel

Quelques cas particuliers = Prociit de deux
matrices
Quelques matrices « de référence » sont a connaitre :

> La matrice nulle de ./, ,(KK) est la matrice qui ne contient
que des coefficients nuls :

2.1. Ensemble des matrices

(0)1si§n =(0)= On,p

1sjsp
> sin=1,onditque A=(a; ... ap)estune matrice ligne.
b1
> sip=1,B=| : | estappelée matrice colonne.

bn



Legon 48 - Calcul

Cas particuliers matrice
Quelques cas particuliers iy
. i n ) . . espace vectoriel

Quelques matrices joueront un réle particulier : . Produit do deux

matrices

> La matrice identité de .4, (K) est la matrice I,, qui posséde
des 1 sur la diagonale et des 0 en dehors de la diagonale :

10 - 0
O 1 0 2.1. Ensemble des matrices
Ly=|. . . .|= (aij)}si'sn =(aiji<i,j<n

<js<n

oua;;=0sii#jeta;; =1pouri=1an.
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Cas particuliers matrice

= (Mn,p,, f)
Quelques cas particuliers espace vectore
= Produit de deux
matrices

Quelques matrices joueront un réle particulier :

> La matrice identité de .4, (K) est la matrice I,, qui posséde
des 1 sur la diagonale et des 0 en dehors de la diagonale :

> une matrice diagonale est une matrice carrée dont seuls les R BT
éléments diagonaux sont non nuls :

all 0 0
0 a9 0 0
. _10 0 ass . . _
diag(aii,...,ann) = @ #J:aij—o)
0 0 0 - ann

Ainsi I,, = diag(1,1,...1).
—

n



Cas particuliers

Quelques cas particuliers
Parmi les matrices carrées d’ordre n, quelques matrices joueront
un réle particulier :

> une matrice scalaire est une matrice diagonale dont tous les
éléments sont identiques :

A 0 - - 0
o A2 0 - 0
0o 0 A

i#j=>a;j=0etaj;=aj=A)

Legon 48 - Calcul
matriciel

= (Mn,p,+)
espace vectoriel

= Produit de deux
matrices

2.1. Ensemble des matrices



Cas particuliers

Quelques cas particuliers
Parmi les matrices carrées d’ordre n, quelques matrices joueront
un réle particulier :
> une matrice scalaire est une matrice diagonale dont tous les
éléments sont identiques :
> une matrice triangulaire supérieure est une matrice carrée
dont les éléments au-dessous de la diagonale sont nuls :

aj; aiz ais ain
0 aga ags agn
0 0 am o @) (> j=a;=0)

0 0 0 o Qpn
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Cas particuliers

Quelques cas particuliers
Parmi les matrices carrées d’'ordre n, quelques matrices joueront
un réle particulier :
> une matrice scalaire est une matrice diagonale dont tous les
éléments sont identiques :
> une matrice triangulaire supérieure est une matrice carrée
dont les éléments au-dessous de la diagonale sont nuls :
> une matrice triangulaire inférieure est une matrice carrée
dont les éléments au-dessus de la diagonale sont nuls.

a11 0 0
a1 @99 0 0
as1 axz a0 GG iog;i=0)

Qnl Qn2 Q@p3 °°°  Qnn
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= Lensemble des matrices, vu comme un espace vectoriel

= Produit de deux matrices bien calilbrées

1. Problémes

2. Espace vectoriel 4, p(K)

2.2. Opérations (vectorielles) sur les matrices

3. Multiplication matricielle
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Legon 48 - Calcul

Ad d |t| 0 n matriciel

= (n,p,,+)
espace vectoriel

= Produit de deux
matrices

Définition - Addition de deux matrices de méme taille

La somme de deux matrices A = (a;;)1<i<n €t B =(b;;)1<i<n de
1sjsp 1sjsp
My p(K) est la matrice définie par la formule suivante :

2.2, Opérations + et -

A+B=(a;j+bij)i<izn,

1sj<p

on ajoute les coefficients qui ont la méme position.
Il s’agit d’'une loi interne sur ., ,(IK).



Addition

Définition - Addition de deux matrices de méme taille
La somme de deux matrices A = (a;;)1<i<n €t B =(b;;)1<i<n de
1sjsp 1sjsp

My p(K) est la matrice définie par la formule suivante :

A+B=(ajj+bijis<i<n,
1sj<p

on ajoute les coefficients qui ont la méme position.
Il s’agit d’'une loi interne sur ., ,(IK).

Application Exemple
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Addition

Analyse Groupe (/y, p(KK),+)
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Addition

Analyse Groupe (/y, p(KK),+)
Le théoréme suivant en découle :

Théoréme - Le groupe (A, ,(KK), +)

Lensemble .4, ,(IK) muni de I'addition + est donc un groupe
commutatif, d'élément neutre la matrice nulle de ./, ,(K).
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Multiplication par un scalaire

Définition - Multiplication par un scalaire
Le produit d'une matrice A de ./, ,(K) par a € K est la matrice

notée a A définie par :

a(a;j)1<i<n = (@a;;)1<i<n-
1sjsp 1sjsp

On définit ainsi une loi externe sur .4, ,(IK) a domaine
d’opérateur K
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Multiplication par un scalaire

Et on vérifie facilement les propriétés suivantes :

Proposition - Propriétés de la multiplication scalaire

1A=A
ca(fA)=(ap)A
o(a+P)A=aA+pA,
ea(A+B)=aA+aB.

Legon 48 - Calcul
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2.2, Opérations + et -



Espace vectoriel de dimension finie

Analyse Pour définir explicitement, sans quiproquo, une matrice,
il faut. ..
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Espace vectoriel de dimension finie

Analyse Pour définir explicitement, sans quiproquo, une matrice,
il faut. ..

Théoréme - Lespace vectoriel (4, p(K),+,.)

(M p(K), +,.) est un K-e.v de dimension np.

La base canonigue est formée par les n x p matrices E
(I1<sk<n;1</?<p)olEy, estlamatrice ne contenant que des
0 sauf I'élément d'indices &, ¢ qui vaut 1, soit

Ere=ribjo)1<i<n

1sjsp

On a donc dimy 4, ,(K) =n x p.
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Legon 48 - Calcul

Espace vectoriel de dimension finie maticiel

= (n,p,,+)
espace vectoriel

= Produit de deux
matrices

Savoir-faire. Notation

Par la suite, on notera ‘[A]; ou Coef; j(A), le coefficient en ligne
1 et colonne j de la matrice A.

On a donc

[AA + uB); = A'[A]; + ('[B);
Coef; j(AA + uB) = ACoef; j(A) + uCoef; j(B)

2.2, Opérations + et -

Vi,J, i[-]j ou Coef; ; est une application linéaire de ./, , ()

On notera également L;(A) (respectivement Cj(A)), la ligne i
(respectivement colonne j) de la matrice A.

On notera que ‘[AB]; = L;(A) x C;(B), quand on verra le produit
matriciel. C’est un nombre.



= Lensemble des matrices, vu comme un espace vectoriel

= Produit de deux matrices bien calilbrées

1. Problémes

2. Espace vectoriel 4, p(K)

2.3. Transposition

3. Multiplication matricielle
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Défln |t|0n matriciel

= (Mn,p,+)
espace vectoriel

= Produit de deux
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Définition - Matrice transposée

Soit A = (a;j)1<i<n,1<j<p € Hn,p(K),
on définit la transposée de A, notée ‘A ou AT par

Vi Sp,j <n: i[AT]j - (i[tA]j :)J[A]L 2.3, Tansposton
OnaAT e 4, 5 (K).

La transposée d’une matrice s’obtient en “échangeant” lignes et
colonnes



Exemple et propritété

Exemple Matrice 3 x 4
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E jes matrice
ons + et

2.3, Transposition



Exemple et propritété

Exemple Matrice 3 x 4

Théoreme - Isomorphisme

Sous réserve que la taille des matrices permette d'effectuer les
différentes opérations, on a :

A+B)T =AT+BT; (1-A)T=1.4T: A"T =4

La transposition est donc un isomorphisme (=application linéaire
bijective) entre les espaces vectoriels M, ,(K) et Mp ,(K).
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Exemple et propritété

Exemple Matrice 3 x 4
Théoreme - Isomorphisme

Sous réserve que la taille des matrices permette d'effectuer les
différentes opérations, on a :

A+B)T =AT+BT; (1-A)T=1.4T: A"T =4

La transposition est donc un isomorphisme (=application linéaire
bijective) entre les espaces vectoriels M, ,(K) et Mp ,(K).

Exercice
Faire la démonstration
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= Lensemble des matrices, vu comme un espace vectoriel

= Produit de deux matrices bien calilbrées

1. Problémes

2. Espace vectoriel 4, p(K)

3. Multiplication matricielle
3.1. Définition
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sopr  agn Lecon 48 - Calcul
Deflnltlon matriciel
= (Mn,p,+)
espace vectoriel

= Produit de deux
matrices

Définition - Produit de deux matrices

Le produit d’'une matrice A = (a;;)1<i<n de Ay, p(K) par une

1sjsp
matrice B = (b;;)1<i<p de My 4(K) est une matrice de .4y, 4(K)
1sj<q

définie par

C=AB=(cij)i<i<n

1sj<q
3.1. Définition

ou

b
Cij :ai1b1j+ai2b2j+...+a,~pbpj Z}; aikbkj.
=1



Savoir-faire : LA formule

Savoir-faire. Notation
On note Coef; ;(A) ou i[A]j, le coefficient en ligne i et colonne j
de la matrice A. On a donc

P
Coef; j(AB) = Z Coef; 1 (A) x Coefy, ;(B)
k=1

. p .
‘[AB]; = ) '[AL*[B];
k=1
comme sizk...]}}z[--- =qQ.
Il faut savoir passer d’'un sens vers un autre.
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Savoir-faire : LA formule

Savoir-faire. Notation
On note Coef; ;(A) ou i[A]j, le coefficient en ligne i et colonne j
de la matrice A. On a donc

P
Coef; j(AB) = Z Coef; 1 (A) x Coefy, ;(B)
k=1

. p .
‘[AB]; = ) '[AL*[B];
k=1
comme S"Zk---]i["' =qQ.
Il faut savoir passer d’'un sens vers un autre.

Attention. Taille des matrices

On ne peut pas multiplier une matrice de .43 4(IK) avec une
matrice de ./ 6(K) ! Il faut que le nombre de colonnes de la
premiere matrice soit égal au nombre de lignes de la seconde.
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Savoir-faire : présentation des calculs

Présentation des calculs

Une méthode pratique de présentation des calculs :

blj
bgj

pJj
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Applications

Application Produit de deux matrices
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Applications

Application Produit de deux matrices

Exemple Petits calculs
3 -3

3 1 5 1 s

Calculer, si cela est possible, AB,BA,A? B2,

SOientAz(2 -3 _4)etB:(—1 5 -2

2

0

]_
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Legon 48 - Calcul

Applications matriciel
= (Mn,p,+)
espace vectoriel

Application Produit de deux matrices = Produit de deux

matrices

Exemple Petits calculs

3 -3 2
SoientA:(g _13 _54) etB=|-1 5 -2|.

-1 3 0
Calculer, si cela est possible, AB,BA,A? B2,

Exercice
Simplifier le produit

n n n
> > 2 arjbinchidim

h=10=1j=1

3.1. Définition



= Lensemble des matrices, vu comme un espace vectoriel

= Produit de deux matrices bien calilbrées

1. Problémes

2. Espace vectoriel 4, p(K)

3. Multiplication matricielle

3.2. Interprétation en terme de systémes linéaires
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3.1. Définition

3.2, Systeme
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Analyse Multiplication par une matrice colonne

3.2, Systeme



Legon 48 - Calcul

Systéme et calcul matriciel matricil

= (Mn,p,+)
espace vectoriel

Proposition - (S) © AX =B

= Produit de deux
matrices

Léquation AX = B pour des matrices est une maniére compacte
d’écrire un systeme linéaire général avec n équations, p

b1
inconnues et un second membre B = :
bn
ailxy + taipxpy = b1
a1x1 + +agpxp =bg
(S) :
+ +
apixi -+ +anpxp =by.

Nous reviendrons sur ce paralléle lorsque nous prendrons le
temps de résoudre des systemes linéaires.



Conclusion

Objectifs
= Ensemble des matrices comme un espace vectoriel
= Produit de deux matrices bien calibrées
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2. Opérations + et

2.3. Transposition

3.1. Définition

ysteme



Conclusion

Objectifs
= Ensemble des matrices comme un espace vectoriel

> (Mp4(K),+,-) est un espace vectoriel
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COﬂC'USIOn matriciel
Objectifs

. . = (Mn,p,+)

= Ensemble des matrices comme un espace vectoriel RS it

= Produit de deux
matrices

> (Mp,q(K),+,-) est un espace vectoriel

> |l est de dimension p x q.



Conclusion

Objectifs
= Ensemble des matrices comme un espace vectoriel

> (Mp q(K),+,-) est un espace vectoriel
> |l est de dimension p x q.

> Une base (la base canonique) est (E; ;); j avec
Coefk,g(Ei,j) = 5i,k6j,[

Legon 48 - Calcul
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espace vectoriel

= Produit de deux
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Conclusion

Objectifs
= Ensemble des matrices comme un espace vectoriel

> (Mp q(K),+,-) est un espace vectoriel
Il est de dimension p x q.

Une base (la base canonique) est (E; ;); ; avec
Coefk,g(Ei,j) = 5i,k6j,€

» Définitions de matrice : matrice colonne, matrice ligne, matrice
identité, matrice diagonale, matrice scalaire, matrice triangulaire
supérieure, matrice triangulaire inférieure

Legon 48 - Calcul
matriciel

= (n,p,,+)
espace vectoriel

= Produit de deux
matrices



Conclusion

Objectifs
= Ensemble des matrices comme un espace vectoriel

> (Mp q(K),+,-) est un espace vectoriel

v

Il est de dimension p x q.

Une base (la base canonique) est (E; ;); ; avec
Coefk,g(Ei,j) = 5i,k6j,€

Définitions de matrice : matrice colonne, matrice ligne, matrice
identité, matrice diagonale, matrice scalaire, matrice triangulaire

supérieure, matrice triangulaire inférieure

Définition de la transposition d’'une matrice.

Legon 48 - Calcul
matriciel

= (n,p,,+)
espace vectoriel

= Produit de deux
matrices



Conclusion

Objectifs
= Ensemble des matrices comme un espace vectoriel
= Produit de deux matrices bien calibrées

Legon 48 - Calcul
matriciel

= (Mn,p,+)
espace vectoriel

= Produit de deux
matrices

2.1. Ensemble des matrices

2. Opérations + et

2.3. Transposition

3.1. Définition

ysteme



Legon 48 - Calcul

COﬂC'USIOn matriciel
Objectifs
. . = (Mn,p,+)
= Ensemble des matrices comme un espace vectoriel espace vectoriel
= Produit de deux matrices bien calibrées = Produit de deux

matrices

> Sile nombre de colonne de A égale le nombre de lignes de B
(égale m), on définit A x B, par

[AxBl; =Y '[AL*BI;
k=1



Legon 48 - Calcul

COﬂC'USIOn matriciel
Objectifs
. . = (Mn,p,+)
= Ensemble des matrices comme un espace vectoriel espace vectoriel
= Produit de deux matrices bien calibrées = Produit de deux

matrices

> Sile nombre de colonne de A égale le nombre de lignes de B
(égale m), on définit A x B, par
. m .
[AxBl; =Y '[AL*[B;
k=1
> Nombreuses interprétations. .. dont (S) & AX =b (avec X et b
colonnes)



Legon 48 - Calcul

COﬂC'USIOn matriciel
Objectifs
. . = (Mn,p,+)
= Ensemble des matrices comme un espace vectoriel espace vectoriel
= Produit de deux matrices bien calibrées = Produit de deux

matrices
> Sile nombre de colonne de A égale le nombre de lignes de B
(égale m), on définit A x B, par

[AxBl; =Y '[AL*B];
k=1

> Nombreuses interprétations. .. dont (S) & AX =b (avec X et b
colonnes)

> Propriétés : associativité, bilinéarité (groupe ?), transposition



Legon 48 - Calcul

COﬂC'USIOn matriciel
Objectifs
. . = (Mn,p,+)
= Ensemble des matrices comme un espace vectoriel espace vectoriel
= Produit de deux matrices bien calibrées = Produit de deux

matrices
> Sile nombre de colonne de A égale le nombre de lignes de B
(égale m), on définit A x B, par

[AxBl; =Y '[AL*B];
k=1

> Nombreuses interprétations. .. dont (S) & AX =b (avec X et b
colonnes)

> Propriétés : associativité, bilinéarité (groupe ?), transposition
> Produit E; j x Fp, o



Legon 48 - Calcul

COﬂC'USIOn matriciel
= (Mn,p,+)
espace vectoriel

Obiectifs = Produit de deux

matrices

= Ensemble des matrices comme un espace vectoriel
= Produit de deux matrices bien calibrées

Pour la prochaine fois
> Lecture du cours : chapitre 8. Calcul matriciel
3. Multiplication
4. Les matrices carrées
> Exercice N°132
> TD:
- jeudi 8h : 329, 326 / 119, 120 a,c,d, 121, 124
- jeudi 10h : 330, 332/117, 118, 120 b,e, 123, 125
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