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Extension de la congruence

Dans la suite les anneaux sont considérés commutatifs.
On étend a tous les anneaux, la notion de congruence vu dans Z.
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Extension de la congruence

Dans la suite les anneaux sont considérés commutatifs.

On étend a tous les anneaux, la notion de congruence vu dans Z.

Définition - Multiple dans un anneau

Soit a un élément d’un anneau A. On appelle multiple de a, les
éléments de I'ensemble (a) = {a x d,d € A}, (parfois noté aA).
On dit que a divise b (noté a|b) si b est un multiple de a.

Legon 52 - Anneaux
et corps

= |déaux et anneaux
quotients

= Corps

2.3, Idéaux



Extension de la congruence

Dans la suite les anneaux sont considérés commutatifs.
On étend a tous les anneaux, la notion de congruence vu dans Z.

Définition - Multiple dans un anneau

Soit a un élément d’un anneau A. On appelle multiple de a, les
éléments de I'ensemble (a) = {a x d,d € A}, (parfois noté aA).
On dit que a divise b (noté a|b) si b est un multiple de a.

Définition - Congruence dans un anneau

Soit m un élément d’'un anneau A. Soient a, b deux éléments de
A.

On dit que a est congru a b modulo m, noté a = b[m] ssi
b—ae(m)(oum|b-—a).
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Legon 52 - Anneaux

Extension de la congruence et corps

= |déaux et anneaux

Dans la suite les anneaux sont considérés commutatifs. quotlents
On étend a tous les anneaux, la notion de congruence vu dans Z. 2 s
Définition - Multiple dans un anneau

Soit a un élément d’un anneau A. On appelle multiple de a, les

éléments de I'ensemble (a) = {a x d,d € A}, (parfois noté aA).

On dit que a divise b (noté a|b) si b est un multiple de a. 2o v

Définition - Congruence dans un anneau

Soit m un élément d’'un anneau A. Soient a, b deux éléments de
A.

On dit que a est congru a b modulo m, noté a = b[m] ssi
b—ae(m)(oum|b-—a).

Remarque Notation multiple



Relation d’équivalence

Proposition - Relation d’équivalence
Dans un anneau, la relation de congruence modulo m est une

relation d’équivalence
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Relation d’équivalence

Proposition - Relation d’équivalence
Dans un anneau, la relation de congruence modulo m est une

relation d’équivalence

Exercice
Faire la démonstration

Legon 52 - Anneaux
et corps

= |déaux et anneaux
quotients

= Corps

2.3, Idéaux



Legon 52 - Anneaux

Compatibilité ot corps
= Idéaux et anneaux
quotients

Théoréme - Compatibilité - oo

Si A est un anneau (commutatif) et m € A.

Alors I'addition et la multiplication sont compatibles pour la
relation d’équivalence = [m].

Autrement écrit, I'addition et la multiplication sont indépendants
du choix du représentant de la classe d’équivalence ; on peut
donc définit une addition et une multiplication sur les classes
d’équivalence :

2.3, Idéaux

x+x' =x+x  xxx' =xxx!



Compatibilité

Théoreme - Compatibilité

Si A est un anneau (commutatif) et m € A.

Alors I'addition et la multiplication sont compatibles pour la
relation d’équivalence = [m].

Autrement écrit, I'addition et la multiplication sont indépendants
du choix du représentant de la classe d’équivalence ; on peut
donc définit une addition et une multiplication sur les classes
d’équivalence :

x+x' =x+x'  xxx' =xxx

Démonstration
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Idéaux

Analyse Ce qui a marché
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ldéaux

Analyse Ce qui a marché

Définition - Idéal de A

Soit A un anneau.

On appelle idéal de A, toute partie I de A tel que :
» 0el
» (I,+) est un sous-groupe de (A, +) (noté I < A)
» YVael, VbeA,abel
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ldéaux

Analyse Ce qui a marché

Définition - Idéal de A

Soit A un anneau.

On appelle idéal de A, toute partie I de A tel que :
» 0el
» (I,+) est un sous-groupe de (A, +) (noté I < A)
» YVael, VbeA,abel

Exercice
Quels sont les idéaux de Z?
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Exercices

Remarque Idéal engendré.
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Exercices

Remarque Idéal engendré.

Exercice
Montrer que si I et J sont deux idéaux de (A, +, x) alors I N J et

I+J:={a+b,acl,beJ}sontdesidéaux de A.
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Sous-anneaux quotients

Heuristique. Quotientage d’'un anneau par un idéal

Parmi les sous-groupes, les sous-groupes distingués
permettaient de prolonger la loi interne (par compatibilité) a la
structure quotiente qui devenait ainsi un groupe (quotient).

Formellement : si (H,+) <1(G,+), alors E,I est un groupe.

Il en est de méme pour le quotient d’'un anneau par un idéal
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Sous-anneaux quotients

Proposition - Anneau quotient
Soit (A, +, %) un anneau (commutatif) et I un idéal.

A _ _
Alors (7, +,*) est un anneau (quotient).

A .
Rappelons que — désigne I'ensemble des classes d’équivalence

de A pour larelatona=b<—=a—-bel.
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Proposition - Anneau quotient = Corps
Soit (A, +, %) un anneau (commutatif) et I un idéal.
A _ _
Alors (7, +,*) est un anneau (quotient).
A -
Rappelons que — désigne I'ensemble des classes d’équivalence 25 s

de A pour larelatona=b<—=a—-bel.
Démonstration



Sous-anneaux quotients

Proposition - Anneau quotient
Soit (A, +, %) un anneau (commutatif) et I un idéal.

A _ _
Alors (7, +, % | est un anneau (quotient).

A
Rappelons que — désigne I'ensemble des classes d’équivalence

de A pour larelatona=b<—=a—-bel.
Démonstration

Exercice

Montrer que si f est un morphisme d’anneaux A sur B.

Alors Ker f ={xe A | f(x)=0p} est un idéal de A.
A

Puis en déduire que K est un anneau

er f
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= et corps
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Nous avons enfin une définition propre d’'un ensemble dont on a

beaucoup parlé.
Comme aZ est un idéal :
2.3. Idéaux



Nous avons enfin une définition propre d’'un ensemble dont on a

beaucoup parlé.
Comme aZ est un idéal :

Corollaire - Anneau quotient de Z
7 _

Soita € Z, 'ensemble (—Z, +,?) des classes d’équivalence de Z
a

est un anneau
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Anneau principal

Proposition - Anneau principal
Soit A un anneau.
On dit qu’un idéal I de A est principal si il existe a € I tel que

I=(a).
On dit qu’un anneau est principal s'il est intégre (commutatif) et

tous ses idéaux sont principaux.
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Legon 52 - Anneaux
et corps

Anneau principal

= |déaux et anneaux

quotients
Proposition - Anneau principal - oo
Soit A un anneau.
On dit qu’un idéal I de A est principal si il existe a € I tel que
I=(a).
On dit qu’un anneau est principal s'il est intégre (commutatif) et
tous ses idéaux sont principaux.

Exemple Z est principal



Legon 52 - Anneaux

Anneau principal ot corps
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Proposition - Anneau principal - oo
Soit A un anneau.

On dit qu’un idéal I de A est principal si il existe a € I tel que
I=(a).

On dit qu’un anneau est principal s'il est intégre (commutatif) et
tous ses idéaux sont principaux. 50 st Ao

principal

Exemple Z est principal
Savoir-faire. Montrer qu’'un anneau est principal

Une méthode qui ne marche pas toujours est de montrer qu’un tel
anneau est d’abord euclidien



Anneau euclidien

Définition - Anneau euclidien

Soit A un anneau. On dit que A est euclidien s'il existe une
application ¢ : A \ {0} — N (appelé stathme euclidien) telle que :
Y (a,b)e A xA\{0},3(q,r) e A% telque a =bg +r

avec r =0 ou ¢(r) < ¢(b)

Notons que l'unicité n’est pas demandé.
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Anneau euclidien

Définition - Anneau euclidien

Soit A un anneau. On dit que A est euclidien s'il existe une
application ¢ : A \ {0} — N (appelé stathme euclidien) telle que :
Y (a,b)e A xA\{0},3(q,r) e A% telque a =bg +r

avec r =0 ou ¢(r) < ¢(b)

Notons que l'unicité n’est pas demandé.
Proposition - Anneau euclidien = Anneau principal

Si A est euclidien, alors A est principal
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Anneau euclidien

Définition - Anneau euclidien

Soit A un anneau. On dit que A est euclidien s'il existe une
application ¢ : A \ {0} — N (appelé stathme euclidien) telle que :
Y (a,b)e A xA\{0},3(q,r) e A% telque a =bg +r

avec r =0 ou ¢(r) < ¢(b)

Notons que l'unicité n’est pas demandé.
Proposition - Anneau euclidien = Anneau principal

Si A est euclidien, alors A est principal

Démonstration
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et corps

Exemple d’anneaux euclidiens
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Exemples Nombreux
Exercice On note Z[i] ={a +ib;a,b € Z}, 'ensemble des entiers
de Gauss.
2.4. Anneau euclidien. Anneau
principal

1. Trouver une division euclidienne sur Z[i]
On prendra, le carré de la fonction module comme stathme

2. En déduire que Z[i] est principal
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Définition
= |déaux et anneaux
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Définition - Corps
Un corps est un anneau commutatif (K, +, x) dans lequel tous les
éléments autres que 0 sont inversibles pour x c’est-a-dire que :
(K,+,x)estun corps si:

> (K,+) est un groupe commutatif;

> (K*,x) est un groupe commutatif, ot 0 désigne I'élément

neutre de K pour + et K* = K \ {0}.
> laloi x est distributive par rapport a la loi +;

3.1. Corps
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Exemples. Régularité

Exemples Nombreux

Tout élément est régulier

Un corps n’a pas de diviseurs de 0. Tout élément autre que 0 est
donc régulier (on peut simplifier).
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Legon 52 - Anneaux
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Exemples. Régularité

= |déaux et anneaux
quotients

= Corps

Exemples Nombreux

Tout élément est régulier
Un corps n’a pas de diviseurs de 0. Tout élément autre que 0 est
donc régulier (on peut simplifier).

3.1. Corps

Démonstration
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Anneau quotient comme un corps ?

Analyse A quel condition un anneau quotient est-il un corps ?
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Legon 52 - Anneaux

Anneau quotient comme un corps ? ot corps

= |déaux et anneaux
quotients

= Corps

Analyse A quel condition un anneau quotient est-il un corps ?

Définition - Idéal maximal

Soit I un idéal de A.

On dit que I est maximal s'il I # A et A est le seul idéal distinct
de I, contenant I

3.2, Idéaux maximaux. Idéaux
premiers



Corps quotient

Proposition - Corps

Soit I un idéal maximal de A. Alors (

~I

,15) est un corps.
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Corps quotient

Proposition - Corps

Soit I un idéal maximal de A. Alors (

Remarque Réciproque

~I

,1,7) est un corps.
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Corps quotient

Proposition - Corps

Soit I un idéal maximal de A. Alors (

Remarque Réciproque
Exemple 6Z n’est pas maximal

~I

,1,7) est un corps.
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Corps quotient

Proposition - Corps
Soit I un idéal maximal de A. Alors (
Remarque Réciproque

Exemple 6Z n’est pas maximal
Démonstration

~I

,1,7) est un corps.
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Exemple% avec p premier.
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T .
Défintion
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Définition - Sous-corps, morphisme
On peut généraliser les définitions précédentes.
» Un sous-corps est un sous-anneau muni d’une structure de
corps.
> Un morphisme de corps est un morphisme d’anneaux.
> Limage d’un corps par un morphisme de corps est un corps.

3.3. Sous-corps. Morphisme

Le dernier point est un exercice a démontrer. 33 Sous
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Conclusion

Objectifs
= |déaux et anneau quotient

» |déaux : groupe pour +, hemi-stabilité pour x

A
» Si I estunidéal, T est un anneau

(pour les lois induites)

Legon 52 - Anneaux
et corps

= |déaux et anneaux
quotients

= Corps



Conclusion

Objectifs
= |déaux et anneau quotient

» |déaux : groupe pour +, hemi-stabilité pour x
, A o
> Si estunidéal, T est un anneau (pour les lois induites)

> Les anneaux (a) (principaux) sont essentiels.
Donc nécessité d’anneaux principaux (ou tous les idéaux sont

principaux)
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Conclusion

Objectifs
= |déaux et anneau quotient

>

>

Idéaux : groupe pour +, hemi-stabilité pour x
A
Si I est un idéal, T est un anneau (pour les lois induites)

Les anneaux (a) (principaux) sont essentiels.
Donc nécessité d’anneaux principaux (ou tous les idéaux sont
principaux)

Une condition suffisante : 'anneau est euclidien.
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Conclusion

Objectifs
= Ildéaux et anneau quotient

= Corps
> Tous les éléments non nuls sont inversibles

> Sous-corps, morphisme de corps
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Legon 52 - Anneaux

Conclusion otcorps
= |déaux et anneaux
quotients

Objectifs = cores
= Ildéaux et anneau quotient
= Corps

> Tous les éléments non nuls sont inversibles
> Sous-corps, morphisme de corps

A
» — estun corps si I est maximal ou premier.
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Conclusion
= |déaux et anneaux
quotients
= Corps
Obijectifs
= |déaux et anneau quotient
= Corps

Pour la prochaine fois
> Lecture du cours : chapitre 24 : Espaces vectoriels

» Exercice n° 345
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