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Extension de la congruence

Dans la suite les anneaux sont considérés commutatifs.
On étend à tous les anneaux, la notion de congruence vu dans Z.

Définition - Multiple dans un anneau

Soit a un élément d’un anneau A. On appelle multiple de a, les
éléments de l’ensemble (a)= {a×d,d ∈ A}, (parfois noté aA).
On dit que a divise b (noté a|b) si b est un multiple de a.

Définition - Congruence dans un anneau

Soit m un élément d’un anneau A. Soient a,b deux éléments de
A.
On dit que a est congru à b modulo m, noté a ≡ b[m] ssi
b−a ∈ (m) (ou m|b−a).

Remarque Notation multiple
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Relation d’équivalence

Proposition - Relation d’équivalence

Dans un anneau, la relation de congruence modulo m est une
relation d’équivalence

Exercice
Faire la démonstration
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Compatibilité

Théorème - Compatibilité

Si A est un anneau (commutatif) et m ∈ A.
Alors l’addition et la multiplication sont compatibles pour la
relation d’équivalence ≡ [m].
Autrement écrit, l’addition et la multiplication sont indépendants
du choix du représentant de la classe d’équivalence ; on peut
donc définit une addition et une multiplication sur les classes
d’équivalence :

x+x′ = x+ x′ x×x′ = x× x′

Démonstration
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Idéaux

Analyse Ce qui a marché

Définition - Idéal de A
Soit A un anneau.
On appelle idéal de A, toute partie I de A tel que :

Ï 0 ∈ I
Ï (I,+) est un sous-groupe de (A,+) (noté I < A)

Ï ∀ a ∈ I, ∀ b ∈ A, ab ∈ I

Exercice
Quels sont les idéaux de Z?
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Exercices

Remarque Idéal engendré.

Exercice
Montrer que si I et J sont deux idéaux de (A,+,×) alors I ∩ J et
I + J := {a+b,a ∈ I,b ∈ J} sont des idéaux de A.
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Sous-anneaux quotients

Heuristique. Quotientage d’un anneau par un idéal

Parmi les sous-groupes, les sous-groupes distingués
permettaient de prolonger la loi interne (par compatibilité) à la
structure quotiente qui devenait ainsi un groupe (quotient).

Formellement : si (H,+)◁ (G,+), alors
(

G
H

,+
)

est un groupe.

Il en est de même pour le quotient d’un anneau par un idéal
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Proposition - Anneau quotient

Soit (A,+,⋆) un anneau (commutatif) et I un idéal.

Alors
(

A
I

,+,⋆
)

est un anneau (quotient).

Rappelons que
A
I

désigne l’ensemble des classes d’équivalence

de A pour la relation a ≡ b ⇐⇒ a−b ∈ I.

Démonstration
Exercice
Montrer que si f est un morphisme d’anneaux A sur B.
Alors Ker f = {x ∈ A | f (x)= 0B} est un idéal de A.

Puis en déduire que
A

Ker f
est un anneau
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Z
aZ

Nous avons enfin une définition propre d’un ensemble dont on a
beaucoup parlé.
Comme aZ est un idéal :

Corollaire - Anneau quotient de Z

Soit a ∈Z, l’ensemble
(
Z

aZ
,+,×

)
des classes d’équivalence de Z

est un anneau
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Anneau principal

Proposition - Anneau principal

Soit A un anneau.
On dit qu’un idéal I de A est principal si il existe a ∈ I tel que
I = (a).
On dit qu’un anneau est principal s’il est intègre (commutatif) et
tous ses idéaux sont principaux.

Exemple Z est principal

Savoir-faire. Montrer qu’un anneau est principal

Une méthode qui ne marche pas toujours est de montrer qu’un tel
anneau est d’abord euclidien
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Anneau euclidien

Définition - Anneau euclidien

Soit A un anneau. On dit que A est euclidien s’il existe une
application ϕ : A \{0}→N (appelé stathme euclidien) telle que :
∀ (a,b) ∈ A× A \{0},∃ (q, r) ∈ A2 tel que a = bq+ r

avec r = 0 ou ϕ(r)<ϕ(b)
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Un corps est un anneau commutatif (K ,+,×) dans lequel tous les
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Exemple Z
pZ avec p premier.
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Défintion

Définition - Sous-corps, morphisme

On peut généraliser les définitions précédentes.

Ï Un sous-corps est un sous-anneau muni d’une structure de
corps.

Ï Un morphisme de corps est un morphisme d’anneaux.

Ï L’image d’un corps par un morphisme de corps est un corps.

Le dernier point est un exercice à démontrer.
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