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Espaces vectoriels

Résumé -

Les espaces vectoriels sont aujourd’hui la structure principale (ou premiere) de

tout cours de mathématiques spéciales dans le monde. Il y a (au moins deux

raisons) : la premiére est historique : c'est le lien qu'ils jouent naturellement avec

la géométrie (en toute dimension). Mais pour nous c'est la seconde raison qui

est prioritaire : c'est le lieu de la linéarité. Or la science physique (actuelle) est la

science de la linéarité. Les espaces vectoriels sont donc parfaitement adaptés au
co-développement maths/physique.
Dans l'ensemble de ce chapitre : on opére sur ces structures ou les sous-espaces

induits (image par application linéaire, addition et intersection) ou sur ces objets

(combinaison linéaire, génératrice et/ou indépendante). . .
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478 Espaces vectoriels

1. Problemes

? Probléme 103 - Structure de la géométrie vectorielle

En physique, on travaille beaucoup avec des vecteurs (forces, posi-
tions...). Ces vecteurs peuvent étre de dimension 2, 3, voire 6 (dans I'es-
pace des phases...).

En mathématiques, on aime dégager les objets de leur histoire pour re-
tenir que la structure sous-jacente.

Si on appelle espace vectoriel, un ensemble de vecteurs et les opérations
que I'on peut poser sur cet ensemble, que peut étre (que doit étre) un es-
pace vectoriel ?

Puis existe-t-il d’autres problémes physiques ou mathématiques dans
lesquels les espaces vectoriels peuvent étre les bons cadres d’étude?

? Probléme 104 - Sous-espaces vectoriels
On suppose que F et G sont des espaces vectoriels (inclus dans un méme
espace vectoriel). IIs sont donc stables par combinaison linéaire.
A quelle condition, I'ensemble F N G est un espace vectoriel ?
A quelle condition, I'ensemble F U G est un espace vectoriel ?

? Probléme 105 - Anneau de sous-espaces vectoriels
Si L, M, N sont des sous-espaces vectoriels d'un espace E, a-t-on

Ln(M+(LNnN)=LNM)+(LNN)

LNn(M+N)=(LnNnM)+(LNN)

? Probleme 106 - Application qui conserve la structure

On considere f : E — F, une application f d'un espace vectoriel E dans
un espace vectoriel F.

E, comme F, sont des structures assez rigides (espace vectoriel) dont la
particularité est la stabilité par la combinaison linéaire.

Quelles propriétés donner a f, pour que la structure rigide se transporte
de Ea Fpar f?

A quelle condition simple nécessaire et/ou suffisante peut-on affirmer
que f est surjective, resp. injective?

? Probléme 107 - Projection

En début d’année, nous avons vu qu’il est pratique d’avoir pour une dé-
composition E = F ¢ G, des applications 1 et 1, ainsi, on peut décom-
poser tout x de F en x = 1p(x) x x+ 1g(x) x x et éviter d’étudier des sous-
cas... Pour les espaces vectoriels, nous voyons que les ensembles (es-
paces) se décomposent plutdt en somme qu'en réunion : E = F& G. 1l
faudrait pouvoir alors, envoyer la partie sur F et celle sur G. Comment
définir proprement deux applications f: E — F et g: E — G, telles que
V x€eE, x=f(x)+g(x)?Unique(s)?
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2. Structure d’espace vectoriel

2.1. Loide composition externe

(~ A
Définition - Loi de composition externe

Soit K un corps. Une loi de composition externe sur E a domaine d’opéra-
teurs K est une application de K x E dans E (on la note généralement par
un point) :
KxE
(4, x)

—E
—A-x

s N
Définition - Espace vectoriel

Soit K un corps commutatif. On appelle K-espace vectoriel (notation K-
e.v.) ou espace vectoriel sur K tout triplet (E, +,-) formé d'un ensemble E,
d’une loiinterne + sur E et d'une loi externe - sur E a domaine d’opérateurs
K tel que:

¢ (E,+) est un groupe commutatif

« Et on ales quatre propriétés suivantes :

Y(a,B) e K2, V(x,y) € E?,

a-(B-x)=(apf)-x
(a+P)-x=(a-x)+(B-x)
a-(x+y)=(a-x)+(@-y)
l-x=x

Les éléments de E s’appellent des vecteurs.

Les éléments de K s’appellent des scalaires.

Lélément neutre de E pour + s’appelle le vecteur nul, il est noté 0z ou 0.
Par abus de langage on dira que E est un K-e.v. (ala place de (E, +, ) est un

K-e.v.)
\ Y,

Remarque - Corps K
Dans la suite on s’intéressera presqu’exclusivement au cas o K =R ou C.
Ce sont les cas figurants au programme, mais la définition peut s’étendre a

Z
).

d’autres cas, par exemple K =Q ouK =F,(= =
p

Proposition - Premieres propriétés
Soit E un K-espace vectoriel. Pour xe Eet LlelK ona:

0-x=0g

(-D-x=-x
A-(=x)=(-A)-x==(A-x)
A-0g=0g
Ax=0gpoA=00ux=0g

Démonstration

Pour aller plus loin - Notation et point de
vue géométrique
Jusqu’a maintenant les vecteurs rencontrés
en mathématiques (et souvent en physique)
s’écrivent plutot AB ou X. Cela permet de bien
faire la différence avec la notation des nombres
(scalaire) k € K dans I'écriture k- X.
On peut plaider pour conserver cette notation :
— C’estvisuel : on ne confond pas les deux
types d’objets
— Cela donne un vrai sens géométrique a
ce cours d’algébre linéaire
Mais malheureusement, comme cela est un
peu réducteur (le point de vue géométrique),
on préférera I'écriture sans fleche. On notera
plutét en lettres grecs les scalaires et en lettres
latines les vecteurs : A - x (en science physique,
on note souvent en gras les vecteurs : k-X)...
Le point de vue géométrique n’est néanmoins
pas a bannir. Il s’agit « seulement » d’'une forme
particuliére incarnation des espaces vectoriels
(mais il permet aussi de voir les choses).

Pour aller plus loin - Module

On appelle A-module, un ensemble (F+,-)
muni des mémes propriétés que E, espace vec-
toriel, a la différence que A est un anneau et
non un corps.

Cela n’est pas sans conséquence sur la ques-
tion des bases, dont nous reparlerons plus loin.
A part cela, il y a beaucoup de points communs
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2.2. Exemples fondamentaux d’espaces vectoriels

Proposition - Espace vectoriel des matrices
Mn,p(K), +,) est un K-espace vectoriel.

Démonstration

Proposition - Espace vectoriel des polynomes
K[X] est un K-espace vectoriel.

Démonstration

Proposition - Espaces produits
Soient Ej,...,E, des K-e.v. (avec le méme corps K). On définit sur E =
Ey; x Ey x---x Epleslois + et - par:

(xl"”’xn)_'_(yl’_“'yn):(xlb-i-lyl,XZE-zJ’z,...,XnE"’;J’n)

)Lo(xl,...,xn):(/1E~1x1,...,)LE-nxn)

Alors (E, +,-) estun K-e.v.,, de vecteur nul (0g,,...,0g,).

Remarque - Application classique

On utilise généralement ce résultat avec des E; sous-espaces vectoriels (cf
paragraphe suivant) d'un méme espace vectoriel E, voire égaux, mais ce n'est
pas obligatoire.

Exercice

A démontrer

K muni de la loi interne + et de la loi x comme loi externe a domaine
d’opérateurs K étant un K-e.v. on en déduit que

Corollaire - Exemple crucial!
K" est un K-e.vde vecteur nul (0,...,0) : R” estun R-e.v. et C" est un C-e.v.

Exercice

Montrer que C" est également un R-e.v.
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(Déﬁnition - Famille presque nulle

exemple).

I'| y; #0} est fini.

On note alors E'” cet ensemble (des familles de E presque nulle).
\Alors (E'D, +,) est un espace vectoriel

On considére un espace vectoriel E défini sur un corps K (K lui-méme par

On dit qu'une famille (y;);e; d’éléments de E est presque nulle, si {i €

Exercice

Ona (y;) +(z;) = (y; + z;). A démontrer

4 Exemple - K™

Proposition - Espaces de fonctions
Soit E un K-e.v. et X un ensemble quelconque. On munit & (X, E) des lois
+ et - définies par :

f+g: X—E

A-f: X—E
x> f(x) +g(x) et

x'—>/1jgf(x)

Alors : (# (X, E), +,) estun K-e.v. (pour E K-e.v.) d’ élément neutre I'appli-
cation nulle (application constante égale a Og).

Démonstration

~
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H1'st01're - Du sens (physique) de R" avec\
nz4

Cela a-t-il un sens « physique » de s’intéresser
a un espace vectoriel de dimension n > 5? La
relativité nous fait voir I'espace-temps comme
un ensemble a 4 dimensions et ensuite?
Pour le mathématicien la question ne se pose
pas...
Et pourtant, la mathématique et la physique
ont partie liée; I'histoire montre que les cou-
per I'un de I'autre ne conduit que vers un asse-
chement (méme si les acteurs ont souvent un
penchant pour I'une ou pour I'autre).
Alors nous répondrons a la question : I'espace
des phases d’un objet de N molécules n’est-il

pas de dimension 6N ?
\ J

( . .
|5\ Histoire - Grassmann

C’est & Hermann Grassmann (1809-1877),
mathématicien d’origine allemande que
l'on doit la formalisation des espaces vec-
toriels (ainsi que la plupart des résultats
de ce cours). Ces idées datent de 1844 :
Théorie de I'extension linéaire. Mais il a totale-
ment été oublié par la postérité mathématique
avant de réapparaitre au milieu du XX° siecle.

Sa vie, a lui également, pourrait faire I'objet

d’'un hinpir

) Analyse - Cas particuliers

Corollaire - Exemples multiples
Z(I,K) (I intervalle de R), KN sont des K-espaces vectoriels.

2.3. Combinaisons linéaires

Soit E un K-e.v.

e N
Définition - Combinaison linéaire
On dit que x € E est combinaison linéaire de la famille finie (x1,...,x;)
d’éléments de E s'il existe (11,...,4,) € K" tel que
X=A1- X1+ A2 %+...+1,-x
L 1 1 2 A2 n n Y,
Proposition - Stabilité linéaire
Si x et y sont combinaisons linéaires de la famille (x,..., x,)
alors pour tout (A, u) € K2, A x+ - y est combinaison linéaire de la famille
(xly---rxn)-
Plus généralement, toute combinaison linéaire de vecteurs qui sont des
combinaisons linéaires de la famille (xi,...,x,) est une combinaison li-
néaire de la famille (xg,..., x;).
Démonstration

(Déﬁnition - Généralisation : combinaison linéaire de famille

Soit I un ensemble infini et (x;);e; une famille d’éléments de E.

On dit que x € E est combinaison linéaire de la famille (x;);c; s'il est

combinaison linéaire d’'un nombre fini d’éléments de cette famille.

Ce qui peut aussi s’écrire : il existe une famille presque nulle (ou a support

compact) (A;);es(c’est-a-dire comportant seulement un nombre fini de A;

non nuls) telle que x = Y A; - x;. Ou encore, il existe J I, fini et (1;) ¢ tel
iel

quex=) A;-x;j.

ie]
& J
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3. Sous-espaces vectoriels

3.1. Définition et caractérisation

Soit (E, +,-) un K-e.v.

Définition - Sous-espace vectoriel

Soit F une partie non vide de E.

On dit que F est un sous-espace vectoriel de E
si F est stable pour les deux lois + et -
et si F muni des lois induites est un K-e.v.

4 Exemple - Triviaux

Proposition - Caractérisation
Soit F c E. F est un sous-espace vectoriel de E si et seulement si

1) F#¢g
2 VAmeK? Vx,y)eF?, A-x+u-yeF

néaire ».

La deuxieme condition se traduit par « F est stable par combinaison li-

Démonstration

Remarque - Elément vide et 0

Si F est un sev de E, alors F est non vide est contient nécessairement Og.

Réciproquement, si Og € F, alors F est non vide.

Donc on peut faire évoluer «la recherche de F est-il non vide? »

contient-il 05?2 »

En outre, si la réponse est non, on peut affirmer que F n'est pas un sev de E

(ce que ne permet pas la réponse négative a la premiére question).

/~Savoir faire - Démontrer que F est un (s.)ev (de E)

Soit F c E. F est un sous-espace vectoriel de E si et seulement si

(1) OpeF
2 VYAwekK? V(xy)eF?, Ax+uyeF

Exercice
Soit F c E. Montrer que F est un sous-espace vectoriel de E si et seulement si

(1) F#9
(2) VYAeK, VY(x,y)eF? Ax+yeF

( . 3 . 3 3 \
|\ Histoire - Petite citation

«J'ai la confiance la plus ferme que le travail
que j'ai consacré a la science exposée ici et qui
m'a accaparé une période importante de ma
vie, réclamant une mise sous tension extréme de
toutes mes forces, ne sera pas perdu.|... | je sais
que méme si ce travail devait rester en sommeil
pendant encore dix-sept ans ou plus, sans em-
prise sur la Science vivante, il n'en viendra pas
moins un temps oit il sera tiré de la poussiere de
loubli et ot les idées qu'il recele porteront leurs
fruits. [... ] Car la vérité est éternelle et divine, et
aucune phase du développement de la vérité, si
petit que soit le domaine qu'elle comprend, ne
peut passer sans laisser de trace; elle perdure,
méme si Uhabit dont des hommes faibles la re-
vétent tombe en poussiére »

Grassmann, Théorie de I’Extension (1862)
_
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3.2. Exemples

Proposition - Sous-espaces vectoriels de ./, (K)

Lensemble des matrices scalaire, 'ensemble des matrices diagonales,
I'ensemble des matrices symétriques, 'ensemble des matrices antisy-
métriques, I'ensemble des matrices triangulaires supérieures, I'’ensemble

des matrices triangulaires inférieures sont des sous-espaces vectoriels de
M (K) (ou My, p([K)).

Exercice
A démontrer

Proposition - K ;[ X]
Pour tout n € N, K, [X] est un sous-espace vectoriel de K[X].

Démonstration

Proposition - Vision géométrique

Dans R? : {(x,y) € R?|ax + by = 0} est un s.e.v de R?> (a,b réels fixés,
(a, b) # (0,0)) (droite vectorielle).

Dans R3: {(x, y,2) € R®|ax+by+cz = 0} est uns.e.vde R? (a, b, c réels fixés,

(a,b,c) # (0,0,0)) (plan vectoriel). Il y a aussi des droites vectorielles dans
R3.

Proposition - Sevde & (I,R)
€ (I,R), 2(I,R), € (I,R) sont des s.e.vde & (I, R).

Démonstration

Exercice

Les ensemble suivants sont-ils des s.e.v de & (R,R) ?
— 2 : ensembles des fonctions de R dans R paires;
— . :ensemble des fonctions de R dans R impaires;
— F={feZRR)|f(1)=2f(0)};
— B={feZRR)|f0)=f1)+1};
— FB={feZRR)| xHIPoof(x) =0}.

Et pour I'espace vectoriel des suites numériques :
Exercice
Les ensemble suivants sont-ils des s.e.v de RN ?
— ensemble des suites géométriques de raison g (réel fixé);
— ensemble des suites géométriques;;
— ensemble des suites arithmétiques;
— ensemble des suites convergentes;
— ensemble des suites convergeant vers 0.

3.3. Sous-espace vectoriel engendré par une partie
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<*Heuristique - Comme pour les groupes : 2 points de vue

Le nom de sous-espace engendré par une partie A de E donne l'idée du plus petit sous-
espace vectoriel de E que I'on peut obtenir en ne prenant que des éléments de A. Un espace
strictement plus grand (pour I'inclusion) contient nécessairement des éléments qui ne sont
obtenables a partir de combinaison linéaire de A. Ce point de vue correspond bien au nom
donné, mais ce n’est pas le point de vue simple mathématiquement qui permet de prouver
I'existence.

Le second point de vue consiste a considérer tous les espaces vectoriels qui contiennent la
partie A et de prendre parmi ceux-ci le plus petit. Or on sait, qu’en faisant 'intersection des
espaces, on obtient nécessairement un ensemble qui contient A (qui est dans tous) et qui
est le plus petit. C’est bien le méme point de vue choisi que pour les groupes engendrés

Soit (E,+,.) un K-e.v.

Théoréme - Intersection de s.e.v

Soient F; et F, deux s.e.vde E. Alors F) N F, estun s.e.vde E.

Plus généralement, soit (F;);c; une famille de s.e.v de E (I fini ou infini).
Alors Njer Fi estuns.evde E.

Démonstration

SiAcE, o ={Bsevde E| Ac B} estnonvide et admet un plus petit élément :

Définition - Sous espace engendré par une partie

Soit A c E. Lensemble des s.e.v de E contenant A admet un plus petit
élément pour l'inclusion que I'on appelle sous-espace vectoriel engendré
par A, noté vect(A). C’est 'intersection de tous les s.e.v contenant A.

Remarque - Unicité
On notera que le plus petit élément est unique.

Démonstration

Remarque - Si A est déja un espace vectoriel
Si A estun s.e.vde E alors vect(A) = A.

Pour aller plus loin - Pas de stabilité par
réunion. mais une nouvelle opération a la
place

La réunion de deux espaces vectoriels n’est pas

(en général) un espace vectoriel.

Par contre, certains auteurs notent A\ B,

l'opération vect(A, B) définie un peu plus bas.

Cette notation est trés compatible avec la suite

du cours. On peut la garder en téte pour la

suite...

Théoreme - Caractérisation
Soit AcE, A#@.
vect(A) est’ensemble des combinaisons linéaires d’éléments de A :

vect(A)={A-a1+--+Ay-an; neN”, (A,...,An) €K, (aq,...,a,) € A"}

On peut donc écrire :

n
uevect(Ad) <= 3IneN*,3IAy,...,Ap €K, 3 ay,...,a, € Atelsque u= Y Aja
i=1
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@Pour aller plus loin - Moins loin

vect(A) est 'ensemble des combinaisons linéaires presque nulle d’élé-
ments de A.

Démonstration

Définition - Sous espace vectoriel engendré par une famille

On appelle sous-espace vectoriel engendré par la famille (x;) ;c; d’éléments
de E le s.e.v engendré par {x;; i € I}. C'est donc I'’ensemble des combinai-
sons linéaires (finies) des x;.

4 Exemple - Dans le Rev C

/“Savoir faire - Montrer un espace vectoriel par famille génératrice
Cela peut servir a prouver qu'un ensemble est un espace vectoriel; par
exemple

{(x,7,2) eR*|I(A, w) €R?, (x,7,2) = A(1,0,1) + (2,2, 1)}

=vect((1,0,1),(2,2,1))

estun s.e.vde R3.

Lexercice suivant est a savoir faire :
Exercice
Caractériser par une équation le s.e.v de R3 engendré par A={(1,1,1),(1,0,1)}.

3.4. Somme de sous-espaces vectoriels
F+G=vect(FUGQG)

Soit (E, +,.) un K-e.v.

Définition - Somme d’espaces vectoriels
Soient Fi,...,F, des s.e.v de E (n € N*). On appelle somme des s.e.v F;
I’ensemble

Fi+F+ -+ F,={x1+x+--+x,|Vie[l,n], x; € F;}

Voici la définition exacte de la réunion Apcta- (
rielle: A+ B=AVB
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Théoréme - Addition et partie engendrée
Fi+F,+---+F,estuns.evde Eetona F; + Fob+---+ F, =vect(F;U...UF},;)
(c’est le plus petit s.e.v de E qui contienne F; U...U Fp.)

Démonstration

Exercice
Dans R3, vérifier que F ={(x,0,0); x € R} et G = {(x, x,0); x € R} sont des s.e.v de R3 et
déterminer F + G.

Nous avons vu que FN G est un sev. Il n'en est pas de tout du méme de FUG.
Cette notion est remplacée dans le cadre des espaces vectoriels par F + G.

/~Savoir faire - Caractérisations. x€e FN G, x€ F+G
On a alors
xeFNG< xeFetxegq,
xeF+G<=3JaeFbeGtelsquex=a+hb.

[ Attention - Deux erreurs classiques qui en découlent
eSixe F+Getx¢ G#& x€ePF.
eE=FeG=FeH#G=H.
Ecrire cela serait confondre les notions de supplémentarité et de
complémentarité!

Somme directe
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Pour aller plus loin - Vision physicienne

En science physique, un excellent réflexe fré-
quent est celui qui affirme : un vecteur est nul
si et seulement si ses coordonnées sont nulles.
On passe ainsi aisément d’une équation (vec-
torielle) a n équation scalaire.

Il arrive de faire la transformation dans les
deux sens...

&k Représentation - Deux espaces différents
4 N A R
supplémentaires a un méme troisiéme

Les
deux droites vectoriels sont toutes les deux
supplémentaires au plan z = 0 dans RS.

On peut y voir la décomposition unique de
zZ =X1+Yy1 = X2 + Y2 pour ces deux espaces
supplémentaires. Méme si y; et y, € &
(méme plan), ce sont néanmoins des vecteurs
différents.

Proposition - Somme directe
Soient Fy,..., F, dess.e.vde E (n € N*). Il y a équivalence de :

X=X1+Xp+--+x,avec Vi,x; € F;

(ii)

Si ces propriétés sont vérifiées, on dit que les F; sont en somme directe et
on note leur somme

n
FieFe--eF,=@F.
i=1

(i) toutélément x de F; + F, + - - - + Fp, s’écrit de maniere unique sous la forme

V(X1,X2,..., Xp) EF1 xFox ... xFy, X1 +Xo++-+Xx,=0g>Vi,x; =0

Démonstration

Corollaire - Cas de 2 s.e.v
Soient F; et F», deux s.e.v de E. F; et F, sont en somme directe si et
seulement si F; N F, = {0g}.

p
Définition - Espaces supplémentaires
F, et F, deux s.e.v de E sont dits supplémentaires si E = F; & F»,
ce qui équivaut a:

1.E=F+F,
2. inF, ={0g}
oua

tout vecteur de E se décompose de maniere unique comme somme d’un

\Vecteur de F; et d'un vecteur de F. )

M Attention - Notation piégée
Lorsqu’on écrit : E = F) @ F», il y a bien DEUX affirmations (deux propo-
sitions ou deux verbes) :
— E=F+F
— La somme est directe : F; & F» ou F; N F, = {0g}
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4 Exemple - Dans le R-e.vC

Remarque - Autour de la notion de supplémentaire
¢ On dit aussi que F» est un supplémentaire de F; (dans E).
* Ne pas confondre supplémentaire et complémentaire, le complémentaire
d’un s.e.v'est jamais un s.e.v
e £ admet un seul supplémentaire, c’est {0z} (et réciproquement).
« Il existe, en général, une infinité de supplémentaires d'un s.e.v (voir l'illus-
tration dans la marge)

/~Savoir faire - Montrer que deux espaces vectoriels sont supplémen-
taires
Montrer que E = F @ G, c’est montrer que E=F+ G et FNG = {0}.
Trés souvent on procede par analyse-synthése :
— Lanalyse : Supposons que E = F +G.
Soitx € E, il existe (y,z) e F x G tel que x = y + z.

Le probléeme : pour UN x donné, il y a DEUX vecteurs y et z,
ce qui est trop de liberté 1l faut découpler ces vecteurs. Ainsi,
apres analyse (lié aux conditions du probléme), on trouve y dé-
fini explicitement en fonction de x (uniquement : i.e. plus de z)
et également on trouve z défini explicitement en fonction de x
(uniquement : i.e. plus de y).

Fin de I'analyse. On ne sait pas si le couple (y, z) existe bien, mais
s'il existe il est unique.

La synthese. On fixe x € E et on reprend le couple (y,z) défini
comme a la fin de I’analyse.
On vérifie tour a tour que :
— YEF
— z€eG
— x=y+z
Fin de la synthese. On a bien, pour tout x € E, 3 (y,z) € F x G tel
quex=y+z,ie. ECcF+G.

(Linclusion réciproque est donné par F c E, G c E, E espace
vectoriel.)

Dans ce genre d’exercice, on exploite souvent le raisonnement en analyse-
synthese.

Exercice

Montrer que &2 (ensembles des fonctions paires) et .# (ensemble des fonctions impaires)
sont des s.e.v supplémentaires de F (R, R).

4. Applications linéaires

4.1. Définitions et exemples

Définition - Application linéaire
Soit u une application de E dans F. On dit que u est linéaire si

1) V(x,y)€E?% w4 y) = ul0 + u(y)

(2) VxeEVlek, u(/ljsx) = /ll.:u(x)

[\ Histoire - Introduction des espaces vecto- )
riels et des applications linéaires

Les applications linéaires (et les espaces vec-
toriels associés) se sont imposées petit a pe-
tits dans les manuel de mathématiques supé-
rieures au début du XX siecle... Elles étaient
initialement considérée avec beaucoup d’at-
tention, le domaine semblait difficile (a I'in-
verse des groupes...). Aujourd’hui, cela se fait
vite des les premiers mois dans les études su-
périeures, partout dans le monde.

Cette universalité est étonnante : la défini-
tion des espaces vectoriels était loin d’étre uni-
forme dans chaque pays. Il semble que ce
soit la multiplication des espaces vectoriels de
fonctions (et en particulier leurs exploitation
par Stefan Banach) qui ait justifié cette intro-

\duction de plus en plus précoce. )
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/~Savoir faire - Montrer qu'une application est linéaire
u: E — F estlinéaire si et seulement si

V(x,y) € B2V, w) € K?, u(d.x + i.y) = dou(x) + p.u(y)

Démontrons qu’on a bien cette équivalence.

Démonstration

Proposition - Image par une application linéaire
Soit u: E — F une application linéaire. Alors

(1) u(g) =0r

n n
2) VneN*,V(x)i<i<n € E",Y(A)1<i<n €K", u( > li-xi) =) Ai.u(x;)
i=1 i=1

Dans le cas d'une famille infinie (x;);ey, si (1;);e; est une famille presque
nulle, on a aussi
u(z )Li.xl-) = Z Aiu(x;).
iel iel

Limage d’'une combinaison linéaire est donc la combinaison linéaire des
images (avec les mémes coefficients).

s N
Définition - endo/iso/auto -morphisme
On appelle
— isomorphisme de E dans F toute application linéaire bijective de E
dans F;

— endomorphisme de E toute application linéaire de E dans E;

— automorphisme de E un isomorphisme de E dans E;

— forme linéaire sur E toute application linéaire de E dans K.

On note

— XZ(E, F)l'ensemble des applications linéaires de E dans F (éventuel-
lement %k (E, F) s’il y a une ambiguité sur le corps K);

— Z(E,K) ou E* 'ensemble des formes linéaires sur E, aussi appelé
dual de E;

— Z(E)'ensemble des endomorphismes de E (i.e. Z(E, E)).

Remarque - Eléments neutres

Pour aller plus loin - Pourquoi s’intéresser | Idr € £ (E) (élément neutre pour o);

aux applications linéaires ? I'application nulle de E dans F est linéaire (élément neutre pour +).
Ce que nous apprend Newton des lois de la
physique (démontré d’une certaine fagon par
les formules de Taylor) : le monde est en pre-
miére approximation linéaire.
Une application quelconque vérifie toujours
au voisinage d’un point My(xo, Yo, 20) :

Exemple - Donner des exemples

FM) = f(Mo) + uf, py (x = X0, Y = Yo, 2 = Z0)

+o(ll(x—x0, ¥ — ¥0,2— 20) 1) Exercice

Soit E = C*° (R, R) le sous-espace vectoriel de & (R, R) constitué des fonctions indéfiniment

avec uy, \p,, une application linéaire!

dérivables sur R. Soit D I'application qui a une fonction de E associe sa dérivée et I I'appli-
cation qui & une fonction f associe la primitive de f qui s’annule en 0.

Vérifier que D et I sont des endomorphismes de E. S’agit-il d'isomorphismes ? Que peut
ondirede Dol etde IoD?
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P Attention - Montrer la bijectivité
§ Lexemple précédent montrer qu’il faut bien les deux conditions fo g =
id ET go f = id, pour pouvoir affirmer que f (ou g) est bijective...

Exercice
Soient F et G deux sous-espaces vectoriels d’'un K-e.v. E. On considére I'application

¢$: FxG —E
(x,y) —x+y.

Montrer que ¢ est linéaire. A quelle condition sur F et G est-ce un isomorphisme ? Quel est
alors I'isomorphisme réciproque ?

(Déﬁnition - Image et noyau
Soit u € Z(E, F). On appelle
— noyau de u, 'ensemble Keru = {x € E|u(x) = 0p} = u "' ({0g})
— image de u, 'ensemble Im u ={y e F|dx € E, y = u(x)} = u(E)

Théoreéme - Transformation par u linéaire, en sev
Soit ue £(E,F).
— Keruestuns.e.vde E, Im u est une s.e.vde F
— Plus généralement, si V est un s.e.vde E et W un s.e.v de F, alors
u '(W) ests.evde E et u(V) estuns.e.vde F.
On rappelle que u(V) = {u(x),x€ V} et u (W) ={x€E| u(x) e W}

Démonstration

Exercice
Montrer que I'application

u: RS — R2
x,2) —x+y—-z,x-y+22)

est une application linéaire de R% dans R? et déterminer son noyau et son image.

Théoréme - Critére d’injectivité et de surjectivité
Soit ue L(E,F).
u estinjective < Ker u = {0g}

u est surjective ©Im u=F

@Pour aller plus loin - Rappel

Ces théorémes ainsi que les définitions asso-
ciées nous rappelle les résultat vu sur les mor-
phismes de groupes
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Démonstration

Exercice
Lapplication linéaire D qui & P € IK[X] associe P’ est-elle injective ? surjective ?

4.2. Cas général: structure de Z(E, F)

Théoréme - Structure d’espace vectoriel
(Z(E,F),+,.) estun K-espace vectoriel.

e Remarque - Interprétation

Cela signifie en particulier que la somme de deux applications linéaires est
linéaire, ainsi que A.f.

On ne fera pas de démonstration.

Théoréme - Composition linéaire
Soient E, F, G trois K-e.v.et u e L (E,F), ve L(F,G). Alors voue Z(E,G).

Démonstration

Théoréme - 112
La réciproque d’'un isomorphisme de E dans F est un isomorphisme de F
dans E.

Démonstration
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s N
Définition - Espaces isomorphes

Deux K-e.v. E et F tels qu'il existe un isomorphisme de E dans F sont dits

isomorphes.
N J

Théoreme - Linéarité de la composition
Soit u € £(E, F). Alors I’ application

Z(FG) — Z(E,G)
v —vou

estlinéairei.e
A +pv)ou=Aviou+pvrou
Soit v € Z(F,G). Alors I’ application

Z(E,F)
u

— Z(E,G)
—vou

estlinéairei.e

vo(Ad.up+ p.up) =A.vouy +p.voup

Démonstration

4.3. Cas particulier de £ (E)

Théoréme - Structure de £ (E)
Soit E un K-e.v.
(Z(E), +) est un groupe commutatif;
(Z(E),+,.) estun K-espace vectoriel;
(Z(E),+,0) est un anneau non commutatif (sauf si E de dimen-
sion finie égale a 1), en particulier la composée de deux endomor-
phismes de E est un endomorphisme de E;

— VAeK,V(u,v) e LE? A v)ou=A.(vou)=voA.u)
On résume ces propriétés en disant que (£ (E), +,0,.) est une algebre sur
K.

Exercice
Donner un contre-exemple pour la commutativité.

Proposition - Régles de calcul dans £ (E)
Soit u € £ (E). On définit pour n € N u" par

W=IdgetVn=1,u"=uou" ' =uou...ou.
—_—

nfacteurs

Pour aller plus loin - Groupe des inverses
Puisque (£ (E), +,0) est un anneau, I'ensemble
(ZL(E),0)* des inverses de £ (E), plutét noté
(GL(E), o) est un groupe : le groupe linéaire.
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Pour aller plus loin - Relation polynomiale

Il faut typiquement interpréter ces relations
avec des polynémes.
n
Ici, on note P = ) aka, Q=XetT =
k=0
v k
Y bpX".
k=0
Onadoncv=P(u), u=Q(u) etw=T(u).
Puis vou = P(u) o Q(u) = (P x Q)(u) = (Q x
P)(u)=uov.
Demémevow = (PxT)(u) = (TxP)(u) = wov

Pour uetv qui commutent (o v = vo u) on a les formules suivantes :

(u+v)"=37_, () u* o v~k (Formule du binéme)
U= v"=(u—-v)o (W +u"20v+...+ uov* 2+ p" 1y (Factorisation)
Idg—v"=Udg-v)oUdg+v+ 1P +...+ V" 2+ "]

On note parfois uov =uv.

M Attention - uv
En algebre, uv n'est JAMAIS u x v, cela n’a pas de sens.
(Iln'y a pas de produit dans les espaces vectoriels)

-4 Application - A compléter

@ Remarque - Démonstration
11 s’agit toujours de la méme démonstration, celle vu avec les polynémes.
Exercice
n
Soient E un K-e.v. et u € Z(E). Montrer que si v =} akuk (avec n €N, ay € K), alors
k=0
& k
v commute avec toute puissance de u, puis que v commute avec w = ). bpu" (avec
k=0
meN, by €K).

Proposition - Groupe linéaire

La réciproque d’'un automorphisme de E est un automorphisme de E.
Lensemble des automorphismes de E muni de la loi o est donc un groupe
(en général non commutatif) appelé groupe linéaire et noté GL(E).

Démonstration

Définition - Homothéties de E

Pour A € K, 'endomorphisme A.Idg : x — A.x s’appelle I’ homothétie de
rapport A.

Une homothétie de rapport non nul est un automorphisme.

4.4. Projecteurs et symétries

Projecteurs

(Déﬁnition - Projecteur )
Soient E; et E, deux sous-espaces vectoriels supplémentaires de E. On sait
que tout x € E s’écrit de maniere unique sous la forme x = x; + x» avec
x1€E etxp e Es.

Lapplication
p: E—E
X+— X1

s’appelle le projecteur sur E; parallelement a E, (ou de direction E»);

qg=1dg—p: E—E
X — X2

AP - Cours de maths MPSI 3 (Fermat - 2025/2026)



4. Applications linéaires 495

s’appelle le projecteur sur E, parallelement a E; (ou de direction Ej).

On dit que p et g sont des projecteurs associés (car ils sont définis par la
méme décomposition de E en s.e.v supplémentaires).

Remarque - Rappel (?) de la projection dans le plan

Le terme de projecteur généralise la notion de projection dans I’ensemble
des vecteurs du plan ou de I'espace. Toutefois on parle également de projec-
tion sur E; parallelement a E,.

Remarque - A partir de 'analyse-synthése

L'analyse-syntheése, conduit souvent a exprimer y (et z) explicitement en
fonction de x. $¢ Représentation - Représentation de la pro-
jection
IciR3 = vect(a) + 2.
On projete u sur 2, on voit que u = a’ + p(u)
avec d et a colinéaires, alors que p(u) € 2.
/

Cette expression explicite est la définition explicite du projecteur.

Proposition - Propriétés premieres d’un projecteur

On suppose que E = E; & E». Soit p le projecteur sur E; parallelement a E»,
alors :

— p estun endomorphisme de E;

— E; = {x € E| p(x) = x} (ensemble des invariants par p);
—Im p =E; etKer p = Ep;
—pep=p.

Démonstration

Remarque - Relation entre les deux projecteurs
Onaaussipog=gqop=0ggF).
En effet si x = x1 + x2, po g(x) = p(x2) =0...

Théoréme - Caractérisation
Soit p un endomorphisme de E.
Alors p est un projecteur si et seulement si po p = p.

On a alors E =Im p @ Ker p et p est le projecteur sur Im p parallelement a
Ker p.
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Démonstration

Symétries

(- A
Définition - Symétrie
Soient E; et E, deux sous-espaces vectoriels supplémentaires de E. On sait

que tout x € E s’écrit de maniere unique sous la forme x = x; + x» avec
x1 € E; et xp € Es.

On appelle symétrie par rapport a E; parallelement a E> (ou symétrie d’axe
E; de direction E») I'application

s: E —E
X=X1+X2 —X1—X2
N J

Représentation - Représentation des symé- . . N
%t 'p P ym Proposition - Propriétés premieres de s

ries

. R . On suppose que E = E; @ E».
Toujours avec les mémes espaces vectoriels , ol . . .
, Soit s la symétrie par rapport a E; parallelement a E,. Alors
A L7

— si p estle projecteur sur E; parallelementa E; ona s =2p — Idg;

— s est un endomorphisme de E et sos = Idp (on dit que s est une
involution de E).

Démonstration

Théoreme - Caractérisation
Soit se £ (E).

Alors s est une symétrie si et seulement si so s = Idg.

On a alors E = Ker (s — Idg) @ Ker (s + IdE) et s est la symétrie par rapport a
Ker (s — Idg) parallelement a Ker (s + Idg).
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Démonstration

Exercice
E =R2, on désigne par f 'endomorphisme de E défini par f((x,y)) = 2x—y,2x—y).

Montrer que f est un projecteur dont on précisera les éléments caractéristiques. On notera
Ei=Im fetE;=Kerf.

Donner la détermination analytique de la symétrie par rapport a E» parallelement a Ej .

5. Familles de vecteurs

E est un K-espace vectoriel.

5.1. Sur-famille, sous-famille

Définition - Sur-famille et sous-famille

Soit (x;);e; une famille d’éléments de E.

On appelle sur-famille de (x;) ;e; toute famille (x;) je; d’éléments de E telle
quelc].

On appelle sous-famille de (x;);c; toute famille (xy)xex d’éléments de E
telleque K c I.

4 Exemple - Interprétation géométrique

5.2. Familles génératrices de E

p
Définition - Famille génératrice de F, sevde E
Soient x1,...,x, n éléments de E.

On dit que la famille (x;,...,x,) est génératrice de F si F = vect(xy, ..., Xn),
c’est-a-dire si

n
VxeFIAy,..., A eK [x=) Ai-x; et VieNpx;eF
i=1
-
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Démonstration

e Remarque - Partie génératrice

On notera en particulier que si F = E, on a toujours x; € E et donc la premieére
caractéristique suffit.

Dans ce cas, on parle parfois de : partie {xy, ..., x,} génératrice de E.
Exercice

Donner des exemples de familles génératrices de :

o R?

. Rs

eleR-evC

o KplX]

« dans & (R, R), une famille génératrice de {y € ZR,R) | y" + y' —2y = 0} est

M Attention - Ne pas s'emballer pour une famille génératrice
Parfois, en cherchant une famille génératrice de F, on se rend compte
que tout vecteur de F s’écrit comme une c.l. des vecteurs (f1, f2,... fp).
Lerreur consisterait a écrire que F = vect(fi, f2,... fp).
La seule chose qu’on ait est une inclusion : F c vect(fi, f2,... fp).
Il faut donc vérifier I'inclusion réciproque : est-ce que tout f; € F (si F est
un bien un espace vectoriel, cela est suffisant) ?

Remarque - Permutation

Limage d’'une famille génératrice de E par une permutation des vecteurs est
encore génératrice.

(Une famille est une liste ou un n-uplet et non un ensemble.

Si la famille (x;) est génératrice de E, ajouter d’autres vecteurs a la famille ne
peut pas faire perdre le caractére générateur de la famille :

Proposition - (Directe)
Toute sur-famille d'une famille génératrice de E est encore génératrice de
E.

Démonstration

En revanche, enlever des vecteurs peut étre problématique

Définition - Famille génératrice minimale de E

On dit que la famille (x;);e; est une famille génératrice minimale de E,

si toute sous-famille stricte (x;);cy n'est pas génératrice (avec H c I et
H#I
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Définition - Généralisation (I potentiellement infini)

La famille d’éléments de E (x;);e; (I infini) est dite génératrice de E, si
vect((x;)ier) = E,

c’est-a-dire si tout élément de E s’écrit comme une combinaison linéaire
d’'un nombre fini de x;.

5.3. Familles libres, liées

(Déﬁnition - Famille libre (ou vecteurs linéairement indépendants)
Soit (x1,...,x,) une famille de vecteurs de E.
— On dit que cette famille est une famille libre (ou que xy, ..., x, sont
des vecteurs linéairement indépendants) si

V(/ll,...,/ln)(—:K”,M.x1+-~+ﬂln.xn:OE:>/11 :...:/ln:O

— Si la famille n’est pas libre, on dit qu’elle est liée (ou que xi,...,x,
sont des vecteurs linéairement dépendants), c’est-a-dire qu’il existe
(A1,...,A5) #(0,...,0) non tous nuls) tel que A;.x1 +---+ A, X = OE.)

Remarque - Interprétation importante!

On a donc qu'une famille est libre si la seule combinaison linéaire des élé-
ments de cette famille qui est nulle est celle dont les coefficients sont égaux a
0.

Proposition - Cas de famille liée
Soit (x1,...,X;) une famille de vecteurs de E.
— Si n =1, lafamille est liée si et seulement si x; = 0g.
— Sil'un des x; est égal a O, alors la famille est liée.
— Six; =xjpouri # j, alorsla famille est liée.
— Si l'un des vecteurs est combinaison linéaire des autres alors la
famille est liée.
— Réciproquement, si n = 2 et si la famille est liée, alors I'un des
vecteurs au moins est combinaison linéaire des autres.

Démonstration

Remarque - Colinéarité (DEUX vecteurs)
(x1, x2) est une famille liée si et seulement si x; et x, sont colinéaires i.e.

JaeK|x, =ax;oux; =axy

Pour aller plus loin - Famille libre

Une famille libre est d’'une certaine fagon un
ensemble de vecteurs qui n’a pas d’éléments
superflus.

Pour aller plus loin - Module (2)

Pour les espaces vectoriels si il existe 1; # 0,
alorsx; =3 j#; ;—Aijxj, i.e. x; estune CL des x;.
Ce raisonnement marche bien car K est un
corps et donc A; estinversible (d’ot1 la division
parl;).

Pour les modules, les éléments de I'anneau ne
sont pas (en régle générale) inversible. C’est es-
sentiellement ici que commence la différence
entre les modules et les espaces vectoriels.
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Exercice
Compléter :
o dans R3 avec x; = (1,0,2),x2 = (1,1,1) = x3
(x1, X2, x3) est
(x1,Xx2,2x3) est
(x1, x2) est
(x1) est
e dans le R-e.v C
(1,7) est
(1, j) est
(1,1, ) est
« dans B, ((1,0), 0, 1) est

e dans K, [X], 1, X, X2,...,X") est
e dans Z (R,R), (cos,sin) est

Exercice classique :
Exercice

On note fj:x— e~ KX Montrer que pour tout 1 € N, la famille (fo,---, fn) est une famille
libre de & (R, R).

La proposition suivante découle des définitions :

Proposition - Manipulation des termes de la famille

Une permutation des vecteurs ne change pas le caractere libre ou lié d’'une
famille.

Toute sous-famille d'une famille libre est libre.

Toute sur-famille d'une famille liée est liée.

La démonstration, simple est néanmoins pédagogique.

Démonstration

Définition - Famille libre maximale
On dit que la famille (x;);c; est une famille libre maximale (dans E),
si toute sur-famille stricte (x;);c; n'est pas libre (avec I < J et I # J)

Définition - Généralisation
Une famille infinie (x;);c; d’éléments de E est dite libre si toute sous-
famille finie est libre.

¢/ Exemple - Famille libre infinie...

Et plus généralement :
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Théoréme - Degrés echelonnés
Toute famille de polynémes non nuls a coefficients dans K de degrés
échelonnés (distincts deux a deux...) est libre dans K[X].

Démonstration

5.4. Image d’'une famille de vecteurs par une application li-
néaire

@Pour aller plus loin - Autre démonstration
Dans ce genre de proposition, il est possible de
faire indifféremment une démonstration par
I'absurde ou une récurrence

Théoréme - Application linéaire et familles de vecteurs
Soit ue £ (E,F).
— Si (x)jes est une famille de vecteurs de E alors

u(vect(xi, i€ I)) = Vect(u(x,-), i€ I).

— Si u est injective alors I'image par u d’'une famille libre de E est une
famille libre de F.
Réciproquement, si I'image par u de n'importe quelle famille libre
de E estlibre, alors u est injective.

— Si u est surjective alors 'image par u d’'une famille génératrice de E
(s’il en existe) est une famille génératrice de F.

— Si u est un isomorphisme, 'image par u d’'une base de E (s'il en
existe) est une base de F. Réciproquement, si il existe une base %
de E telle que son image par u soit une base de F, alors u est un

isomorphisme.

Démonstration
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e Remarque - Réciproque pour la surjectivité ?

Cela donnerait : Sil'image par u d'une (de toute) famille génératrice de E est
une famille génératrice de F alors u est surjective.

En fait, on n’a pas besoin du fait que la famille initiale soit génératrice de E.
Donc des hypothéses moins fortes.

Exercice

Retrouver 'image de 'application linéaire

u: RS —R2
(x,,2) —x+y—-z,x—-y+22)
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Synthése

~ Les espaces vectoriels est le nom savant pour les ensembles dans
lesquels les éléments (vecteurs) peuvent sans difficulté s’additionner
et étre multiplié par des constantes d'un corps K. Une combinaison
linéaire est par définition 'opération : (A, u, u, v) € K? x E? — Au+
uv € E. E est donc le monde des combinaisons linéaires, ou plus
rapidement de la linéarité.

~+ Les éléments de E s’écrivent donc les uns a partir des autres par addi-
tions, ou multiplication par une constante. Les éléments se décrivent
les uns par rapport aux autres de manieres multiples. Nous revien-
drons sur cette non-unicité au chapitre suivant

~> Les applications linéaires sont les applications de transcriptions de
structure d’espaces, tout simplement. De nombreuses définitions
se développent alors : automorphismes, formes linéaires, noyau et
image...
Des propriétés se filent : I'injectivité de u est toujours associée a des
familles libres, la surjectivité de u est associée a des familles généra-
trices.

~» Deux familles d’applications linéaires : les projecteurs et les symétries
vectorielles nous intéressent. La premiére permet de se concentrer sur
une partie de I’espace; on parle de la réduction de I'espace sur ces
sous-espaces.
C’est une partie importante en seconde année.

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Montrer que deux espaces vectoriels sont supplémen-
taires

— Savoir-faire - Démontrer que F est un (s.)ev (de E)

— Savoir-faire - Montrer un espace vectoriel par famille génératrice

— Savoir-faire - Caractérisations: xe FnGetxe F+G

— Savoir-faire - Montrer qu'une application est linéaire

Notations
Notations Définitions Propriétés Remarques
vect(A) (=< A>) Sous-espace vectoriel de E engendré par A vect(A) = {Z{YZI AiaikeN,A; €K, a; € A} C’est le plus petit sev de E conte-
nant A.
E=F+G E estla somme des espaces F et G Vx€e€E 3(y,2)eFxGtelsquex=y+z F+G=vect(FUG)
E=FNnG E estl'intersection des espaces F et G VxeE xeFetxeG
E=FeaG E estla somme directe des espaces F et G VxeE 3 (y,2)eFxGtelsquex=y+z Deux informations : E = F+G et
FnG=9
F=FieF---&F E estla somme directe des espaces F; VxeF,3!(x1,X2,...xx) € Fi xFp---xFrtels  Deux informations : F = Fj +
que x = Zi.‘zl X; Fp + -+ + Fj et I'écriture de 0 est
unique : 0 = Z;C:lxi =>VieN,
x;=0
Z(E,F) Ensemble des applications linéaires de E On note £ (E) 'espace £(E, E)
vers F
GL(E) Groupe (linéaire) des automorphismes de
E
Im () Image de I'application u Im (1) ={u(x);x€ E}cF u surjectif ssiIm u = F
Ker (u) Noyau de I'application u Ker(u)={x€eE|u(x)=0}cE u injectif ssi Ker u = {0}

Retour sur les problémes

103. Enormément! Il faut méme souvent ajouter des hypothéses, ainsi en
mécanique quantique les objets sont des vecteurs d'un espace vecto-
riel normé muni d’un produit sesquilinéaire (=scalaire sur C) complet.
Il espace d'un espace dit de Hilbert.
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104.

105.

106.
107.

FnGesttoujours un sevde E. Ce n'est pas le cas de EUG.
FuGestunsevde EssiFcGouGc F

En prenant, dans R%, L = vect(0,1), M = vect(1,1) et N = vect(1,0), on
trouve M+ N = R? et donc Ln(M+ N) = L, alors que LM ={0}=LNN
et donc Ln M+ Ln N = {0}. Pour le reste, on a les trois inclusions. A
démontrer...

Cours : Application linéaire

Cours : le role important des projecteurs!
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