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Chapitre 24
Espaces vectoriels

Les espaces vectoriels sont aujourd’hui la structure principale (ou première) de
tout cours de mathématiques spéciales dans le monde. Il y a (au moins deux
raisons) : la première est historique : c’est le lien qu’ils jouent naturellement avec
la géométrie (en toute dimension). Mais pour nous c’est la seconde raison qui
est prioritaire : c’est le lieu de la linéarité. Or la science physique (actuelle) est la
science de la linéarité. Les espaces vectoriels sont donc parfaitement adaptés au
co-développement maths/physique.
Dans l’ensemble de ce chapitre : on opère sur ces structures ou les sous-espaces
induits (image par application linéaire, addition et intersection) ou sur ces objets
(combinaison linéaire, génératrice et/ou indépendante). . .
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478 Espaces vectoriels

1. Problèmes

En physique, on travaille beaucoup avec des vecteurs (forces, posi-
tions. . .). Ces vecteurs peuvent être de dimension 2, 3, voire 6 (dans l’es-
pace des phases. . .).
En mathématiques, on aime dégager les objets de leur histoire pour re-
tenir que la structure sous-jacente.
Si on appelle espace vectoriel, un ensemble de vecteurs et les opérations
que l’on peut poser sur cet ensemble, que peut être (que doit être) un es-
pace vectoriel ?
Puis existe-t-il d’autres problèmes physiques ou mathématiques dans
lesquels les espaces vectoriels peuvent être les bons cadres d’étude ?

Problème 103 - Structure de la géométrie vectorielle

On suppose que F et G sont des espaces vectoriels (inclus dans un même
espace vectoriel). Ils sont donc stables par combinaison linéaire.
A quelle condition, l’ensemble F →G est un espace vectoriel ?
A quelle condition, l’ensemble F ↑G est un espace vectoriel ?

Problème 104 - Sous-espaces vectoriels

Si L, M , N sont des sous-espaces vectoriels d’un espace E , a-t-on

L→ (M + (L→N )) = (L→M)+ (L→N )

L→ (M +N ) = (L→M)+ (L→N )

Problème 105 - Anneau de sous-espaces vectoriels

On considère f : E ↓ F , une application f d’un espace vectoriel E dans
un espace vectoriel F .
E , comme F , sont des structures assez rigides (espace vectoriel) dont la
particularité est la stabilité par la combinaison linéaire.
Quelles propriétés donner à f , pour que la structure rigide se transporte
de E à F par f ?
A quelle condition simple nécessaire et/ou suffisante peut-on affirmer
que f est surjective, resp. injective?

Problème 106 - Application qui conserve la structure

En début d’année, nous avons vu qu’il est pratique d’avoir pour une dé-
composition E = F ↔G , des applications 1F et 1G , ainsi, on peut décom-
poser tout x de F en x = 1F (x)↗x+1G (x)↗x et éviter d’étudier des sous-
cas. . . Pour les espaces vectoriels, nous voyons que les ensembles (es-
paces) se décomposent plutôt en somme qu’en réunion : E = F ↘G . Il
faudrait pouvoir alors, envoyer la partie sur F et celle sur G . Comment
définir proprement deux applications f : E ↓ F et g : E ↓ G , telles que
≃ x ⇐ E , x = f (x)+ g (x) ? Unique(s) ?

Problème 107 - Projection
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2. Structure d’espace vectoriel

2.1. Loi de composition externe

SoitK un corps. Une loi de composition externe sur E à domaine d’opéra-
teurs K est une application de K↗E dans E (on la note généralement par
un point) :

K↗E ↓ E
(ω, x) ⇒↓ω · x

Définition - Loi de composition externe

Jusqu’à maintenant les vecteurs rencontrés
en mathématiques (et souvent en physique)
s’écrivent plutôt ωAB ouωx. Cela permet de bien
faire la différence avec la notation des nombres
(scalaire) k ⇐K dans l’écriture k ·ωx.
On peut plaider pour conserver cette notation :

— C’est visuel : on ne confond pas les deux
types d’objets

— Cela donne un vrai sens géométrique à
ce cours d’algèbre linéaire

Mais malheureusement, comme cela est un
peu réducteur (le point de vue géométrique),
on préférera l’écriture sans flèche. On notera
plutôt en lettres grecs les scalaires et en lettres
latines les vecteurs : ω · x (en science physique,
on note souvent en gras les vecteurs : k ·x). . .
Le point de vue géométrique n’est néanmoins
pas à bannir. Il s’agit « seulement » d’une forme
particulière incarnation des espaces vectoriels
(mais il permet aussi de voir les choses).

Pour aller plus loin - Notation et point de
vue géométriqueSoit K un corps commutatif. On appelle K-espace vectoriel (notation K-

e.v.) ou espace vectoriel sur K tout triplet (E ,+, ·) formé d’un ensemble E ,
d’une loi interne + sur E et d’une loi externe · sur E à domaine d’opérateurs
K tel que :
• (E ,+) est un groupe commutatif
• Et on a les quatre propriétés suivantes :
≃(ε,ϑ) ⇐K2, ≃(x, y) ⇐ E 2,

ε · (ϑ · x) = (εϑ) · x
(ε+ϑ) · x = (ε · x)+ (ϑ · x)
ε · (x + y) = (ε · x)+ (ε · y)
1 · x = x

Les éléments de E s’appellent des vecteurs.
Les éléments deK s’appellent des scalaires.
L’élément neutre de E pour + s’appelle le vecteur nul, il est noté 0E ou ω0E .
Par abus de langage on dira que E est unK-e.v. (à la place de (E ,+, ·) est un
K-e.v.)

Définition - Espace vectoriel

STOP Remarque - CorpsK
Dans la suite on s’intéressera presqu’exclusivement au cas oùK=R ou C.
Ce sont les cas figurants au programme, mais la définition peut s’étendre à

d’autres cas, par exempleK=Q ouK= Fp (= Z

pZ
).

On appelle A-module, un ensemble (F,+, ·)
muni des mêmes propriétés que E , espace vec-
toriel, à la différence que A est un anneau et
non un corps.
Cela n’est pas sans conséquence sur la ques-
tion des bases, dont nous reparlerons plus loin.
A part cela, il y a beaucoup de points communs

Pour aller plus loin - Module

Soit E unK-espace vectoriel. Pour x ⇐ E et ω ⇐K on a :

0 · x = 0E
(⇑1) · x =⇑x
ω · (⇑x) = (⇑ω) · x =⇑(ω · x)
ω ·0E = 0E
ω · x = 0E ⇓ω= 0 ou x = 0E

Proposition - Premières propriétés

Démonstration

Pour tout x ⇐ E , on notera que 1 · x = x.
— x = 1 · x = (0+1) · x = 0 · x +1 · x = 0 · x + x donc 0 · x = 0E ,

nécessairement
— 0E = 0 · x = (1+ (⇑1)) · x = x + (⇑1) · x, donc (⇑1) ·x =⇑x.
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480 Espaces vectoriels

— De même : 0E = 0 · x = (ω+ (⇑ω)) · x = ωx + (⇑ω) · x, donc
(⇑ω) · x =⇑ω · · ·x.

— ω · (⇑x) = [ω · (⇑1)] · x = (⇑ω) · x
— Et donc Et 0E =ω ·x +ω · (⇑x) =ω · (x ⇑x) =ω ·0E
— Supposons que ω · x = 0E .

Si ω ⇔= 0, on a donc 0E =ω⇑1 ·0E = (ω⇑1) ·ω · x = 1 ·x = x,
car ω ⇐K, corps, donc ω inversible.

Et par conséquent, x = 0E .
Donc ou bien ω= 0K ou bien x = 0E .

2.2. Exemples fondamentaux d’espaces vectoriels

Mn,p (K),+, ·) est unK-espace vectoriel.
Proposition - Espace vectoriel des matrices

Démonstration
Vu dans le cours sur les matrices

K[X ] est unK-espace vectoriel.
Proposition - Espace vectoriel des polynômes

Démonstration
K[X ] a été construit pour cela, c’est même mieux : une algèbre
(un mélange d’espace vectoriel et anneau).

Soient E1, . . . ,En des K-e.v. (avec le même corps K). On définit sur E =
E1 ↗E2 ↗ · · ·↗En les lois + et · par :

(x1, . . . , xn)+ (y1, . . . , yn) = (x1 +
E1

y1, x2 +
E2

y2, . . . , xn +
En

yn)

ω · (x1, . . . , xn) = (ω ·
E1

x1, . . . ,ω ·
En

xn)

Alors (E ,+, ·) est unK-e.v., de vecteur nul (0E1 , . . . ,0En ).

Proposition - Espaces produits

STOP Remarque - Application classique
On utilise généralement ce résultat avec des Ei sous-espaces vectoriels (cf
paragraphe suivant) d’un même espace vectoriel E , voire égaux, mais ce n’est
pas obligatoire.
Exercice
A démontrer

K muni de la loi interne + et de la loi ↗ comme loi externe à domaine
d’opérateursK étant unK-e.v. on en déduit que

Kn est unK-e.v de vecteur nul (0, . . . ,0) : Rn est un R-e.v. et Cn est un C-e.v.
Corollaire - Exemple crucial !

Exercice
Montrer que Cn est également un R-e.v.
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2. Structure d’espace vectoriel 481

On considère un espace vectoriel E défini sur un corpsK (K lui-même par
exemple).
On dit qu’une famille (yi )i⇐I d’éléments de E est presque nulle, si {i ⇐
I | yi ⇔= 0} est fini.
On note alors E (I ) cet ensemble (des familles de E presque nulle).
Alors (E (I ),+, ·) est un espace vectoriel

Définition - Famille presque nulle

Exercice
On a (yi )+ (zi ) = (yi + zi ). A démontrer

Exemple -K(N)

L’ensemble des familles presque nulles de K indexés sur N est
isomorphe à l’ensemble des polynômesK[X ].

Soit E un K-e.v. et X un ensemble quelconque. On munit F (X ,E) des lois
+ et · définies par :

f + g : X ↓ E
x ⇒↓ f (x)+

E
g (x) et

ω · f : X ↓ E
x ⇒↓ω ·

E
f (x)

Alors : (F (X ,E),+, ·) est un K-e.v. (pour E K-e.v.) d’élément neutre l’appli-
cation nulle (application constante égale à 0E ).

Proposition - Espaces de fonctions

Démonstration

(F (X ,E),+) est un groupe commutatif d’élément neutre l’appli-
cation nulle. De plus :
≃(ε,ϑ) ⇐K2, ≃( f , g ) ⇐F 2 =F (X ,E)2, on a pour tout x ⇐ X :

(
ε ·

F
(ϑ ·

F
f )

)
(x) =ε ·

E
(ϑ ·

E
f (x)) par définition (appliquée deux fois) de .

F

= (εϑ) ·
E

f (x) car E est unK⇑e.v.

=
(
(εϑ) ·

F
f
)
(x) par définition de .

F(
(ε+

K
ϑ) ·

F
f
)
(x) = (ε+

K
ϑ) ·

E
f (x) par définition de ·

F

=ε ·
E

f (x)+
E
ϑ ·

E
f (x) car E est unK⇑e.v.

= (ε ·
F

f )(x)+
E

(ϑ ·
F

f )(x) par définition de .
F

=
(
ε ·

F
f +

F
ϑ ·

F
f
)
(x) par définition de +

F

Ces résultats étant vrais pour tout élément de X , ensemble de
départ commun aux applications ε ·

F
(ϑ ·

F
f ) et (εϑ) ·

F
f d’une

part, et (ε+
K
ϑ) ·

F
f et ε ·

F
f +

F
ϑ .

F
f d’autre part (qui ont même

ensemble d’arrivée E), on en déduit que

ε ·
F

(ϑ ·
F

f ) = (εϑ) ·
F

f

(ε+
K
ϑ) ·

F
f =ε ·

F
f +

F
ϑ ·

F
f

On démontre de même que ε ·
F

( f +
F

g ) = ε ·
F

f +
F
ε ·

F
g et que

1 ·
F

f = f .

On en déduit que (F (X ,E),+, ·) est unK-e.v.
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482 Espaces vectoriels

Analyse - Cas particuliers
Pour X = I intervalle de R on obtient que F (I ,R) est un R-e.v.
(on peut remplacer R par C)
Pour X =N on obtient que RN est un R-e.v. (on peut remplacer R
par C)
Pour X = E K-e.v. on obtient que F (E ,E) est unK-e.v.

Cela a-t-il un sens « physique » de s’intéresser
à un espace vectoriel de dimension n > 5 ? La
relativité nous fait voir l’espace-temps comme
un ensemble à 4 dimensions et ensuite?
Pour le mathématicien la question ne se pose
pas. . .
Et pourtant, la mathématique et la physique
ont partie liée ; l’histoire montre que les cou-
per l’un de l’autre ne conduit que vers un assè-
chement (même si les acteurs ont souvent un
penchant pour l’une ou pour l’autre).
Alors nous répondrons à la question : l’espace
des phases d’un objet de N molécules n’est-il
pas de dimension 6N ?

1
JAN Histoire - Du sens (physique) de Rn avec

n ↖ 4
F (I ,K) (I intervalle de R),KN sont desK-espaces vectoriels.

Corollaire - Exemples multiples

2.3. Combinaisons linéaires

Soit E unK-e.v.

On dit que x ⇐ E est combinaison linéaire de la famille finie (x1, . . . , xn)
d’éléments de E s’il existe (ω1, . . . ,ωn) ⇐Kn tel que

x =ω1 · x1 +ω2 · x2 + . . .+ωn · xn

Définition - Combinaison linéaire

Si x et y sont combinaisons linéaires de la famille (x1, . . . , xn)
alors pour tout (ω,µ) ⇐K2, ω ·x+µ · y est combinaison linéaire de la famille
(x1, . . . , xn).
Plus généralement, toute combinaison linéaire de vecteurs qui sont des
combinaisons linéaires de la famille (x1, . . . , xn) est une combinaison li-
néaire de la famille (x1, . . . , xn).

Proposition - Stabilité linéaire

C’est à Hermann Grassmann (1809-1877),
mathématicien d’origine allemande que
l’on doit la formalisation des espaces vec-
toriels (ainsi que la plupart des résultats
de ce cours). Ces idées datent de 1844 :
Théorie de l’extension linéaire. Mais il a totale-
ment été oublié par la postérité mathématique
avant de réapparaitre au milieu du XXe siècle.
Sa vie, à lui également, pourrait faire l’objet
d’un biopic. . .

1
JAN Histoire - Grassmann Démonstration

On a x =
n∑

i=1
ωi · xi et y =

n∑
i=1

µi · xi , donc par propriété des lois +
et · on obtient

ω · x +µ · y =ω ·
n∑

i=1
ωi · xi +µ ·

n∑

i=1
µi ·xi =

n∑

i=1
(ωωi +µµi ) · xi

et donc ω · x + µ · y est combinaison linéaire de la famille
(x1, . . . , xn).
Par récurrence, on généralise à une combinaison linéaire d’un
nombre quelconque de vecteurs.

Soit I un ensemble infini et (xi )i⇐I une famille d’éléments de E .
On dit que x ⇐ E est combinaison linéaire de la famille (xi )i⇐I s’il est
combinaison linéaire d’un nombre fini d’éléments de cette famille.
Ce qui peut aussi s’écrire : il existe une famille presque nulle (ou à support
compact) (ωi )i⇐I (c’est-à-dire comportant seulement un nombre fini de ωi
non nuls) telle que x = ∑

i⇐I
ωi · xi . Ou encore, il existe J ↙ I , fini et (ωi )i⇐J tel

que x =
∑

i⇐J
ωi · x j .

Définition - Généralisation : combinaison linéaire de famille
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3. Sous-espaces vectoriels

3.1. Définition et caractérisation

Soit (E ,+, ·) unK-e.v.

Soit F une partie non vide de E .
On dit que F est un sous-espace vectoriel de E

si F est stable pour les deux lois + et ·
et si F muni des lois induites est unK-e.v.

Définition - Sous-espace vectoriel

Exemple - Triviaux
{0E } et E sont des s.e.v de E .

Soit F ↙ E . F est un sous-espace vectoriel de E si et seulement si

(1) F ⇔=∝
(2) ≃(ω,µ) ⇐K2, ≃(x, y) ⇐ F 2, ω · x +µ · y ⇐ F

La deuxième condition se traduit par « F est stable par combinaison li-
néaire ».

Proposition - Caractérisation

Démonstration
Si F est un sev de E , alors

F est non vide
et F est stable pour les deux lois induites,

Donc nécessairement≃(ω,µ) ⇐K2,≃(x, y) ⇐ F 2, ⇐ F︸︷︷︸ ⇐ F︸︷︷︸ω · x + ⇐ F︸︷︷︸µ · y ⇐
F
Réciproquement,
Si F est non vide et stable par combinaison linéaire,

F est non vide, stable par addition (ω=µ= 1),
F est stable par · (avec µ= 0K, y = 0E )
Les éléments de F sont aussi des éléments de E et donc F est

unKev.

« J’ai la confiance la plus ferme que le travail
que j’ai consacré à la science exposée ici et qui
m’a accaparé une période importante de ma
vie, réclamant une mise sous tension extrême de
toutes mes forces, ne sera pas perdu.[. . . ] je sais
que même si ce travail devait rester en sommeil
pendant encore dix-sept ans ou plus, sans em-
prise sur la Science vivante, il n’en viendra pas
moins un temps où il sera tiré de la poussière de
l’oubli et où les idées qu’il recèle porteront leurs
fruits. [. . . ] Car la vérité est éternelle et divine, et
aucune phase du développement de la vérité, si
petit que soit le domaine qu’elle comprend, ne
peut passer sans laisser de trace ; elle perdure,
même si l’habit dont des hommes faibles la re-
vêtent tombe en poussière »
Grassmann, Théorie de l’Extension (1862)

1
JAN Histoire - Petite citation

STOP Remarque - Elément vide et 0E
Si F est un sev de E , alors F est non vide est contient nécessairement 0E .
Réciproquement, si 0E ⇐ F , alors F est non vide.
Donc on peut faire évoluer « la recherche de F est-il non vide ? » en « F
contient-il 0E ? »
En outre, si la réponse est non, on peut affirmer que F n’est pas un sev de E
(ce que ne permet pas la réponse négative à la première question).

Soit F ↙ E . F est un sous-espace vectoriel de E si et seulement si

(1′) 0E ⇐ F

(2) ≃(ω,µ) ⇐K2, ≃(x, y) ⇐ F 2, ω.x +µ.y ⇐ F

Savoir faire - Démontrer que F est un (s.)ev (de E)

Exercice
Soit F ↙ E . Montrer que F est un sous-espace vectoriel de E si et seulement si

(1) F ⇔=∝

(2) ≃ω ⇐K, ≃(x, y) ⇐ F 2, ω.x + y ⇐ F
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3.2. Exemples

L’ensemble des matrices scalaire, l’ensemble des matrices diagonales,
l’ensemble des matrices symétriques, l’ensemble des matrices antisy-
métriques, l’ensemble des matrices triangulaires supérieures, l’ensemble
des matrices triangulaires inférieures sont des sous-espaces vectoriels de
Mn(K) (ou Mn,p (K)).

Proposition - Sous-espaces vectoriels de Mn(K)

Exercice
A démontrer

Pour tout n ⇐N,Kn[X ] est un sous-espace vectoriel deK[X ].
Proposition -Kn[X ]

Démonstration
0 ⇐Kn[X ].
Si P1,P2 ⇐Kn[X ] et ω1,ω2 ⇐K, alors deg(ω1P1 +ω2P2) ∞ n.
Donc ω1P1 +ω2P2 ⇐Kn[X ]

Dans R2 : {(x, y) ⇐ R2 |ax + by = 0} est un s.e.v de R2 (a,b réels fixés,
(a,b) ⇔= (0,0)) (droite vectorielle).
Dans R3 : {(x, y, z) ⇐R3 |ax+by+cz = 0} est un s.e.v de R3 (a,b,c réels fixés,
(a,b,c) ⇔= (0,0,0)) (plan vectoriel). Il y a aussi des droites vectorielles dans
R3.

Proposition - Vision géométrique

C (I ,R), D(I ,R), C 1(I ,R) sont des s.e.v de F (I ,R).
Proposition - Sev de F (I ,R)

Démonstration
La fonction nulle 0 : I ↓ R, x ⇒↓ 0 est dans chacun de ces en-
sembles.
Ils sont stables par combinaison linéaire.

Exercice
Les ensemble suivants sont-ils des s.e.v de F (R,R) ?

— P : ensembles des fonctions de R dans R paires ;
— I : ensemble des fonctions de R dans R impaires ;
— F1 = { f ⇐F (R,R) | f (1) = 2 f (0)} ;
— F2 = { f ⇐F (R,R) | f (0) = f (1)+1} ;
— F3 = { f ⇐F (R,R) | lim

x↓⇑∈ f (x) = 0}.

Et pour l’espace vectoriel des suites numériques :
Exercice
Les ensemble suivants sont-ils des s.e.v de RN ?

— ensemble des suites géométriques de raison q (réel fixé) ;
— ensemble des suites géométriques ;
— ensemble des suites arithmétiques ;
— ensemble des suites convergentes ;
— ensemble des suites convergeant vers 0.

3.3. Sous-espace vectoriel engendré par une partie
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Le nom de sous-espace engendré par une partie A de E donne l’idée du plus petit sous-
espace vectoriel de E que l’on peut obtenir en ne prenant que des éléments de A. Un espace
strictement plus grand (pour l’inclusion) contient nécessairement des éléments qui ne sont
obtenables à partir de combinaison linéaire de A. Ce point de vue correspond bien au nom
donné, mais ce n’est pas le point de vue simple mathématiquement qui permet de prouver
l’existence.
Le second point de vue consiste à considérer tous les espaces vectoriels qui contiennent la
partie A et de prendre parmi ceux-ci le plus petit. Or on sait, qu’en faisant l’intersection des
espaces, on obtient nécessairement un ensemble qui contient A (qui est dans tous) et qui
est le plus petit. C’est bien le même point de vue choisi que pour les groupes engendrés

Heuristique - Comme pour les groupes : 2 points de vue

Soit (E ,+, .) unK-e.v.

Soient F1 et F2 deux s.e.v de E . Alors F1 →F2 est un s.e.v de E .
Plus généralement, soit (Fi )i⇐I une famille de s.e.v de E (I fini ou infini).
Alors

⋂
i⇐I Fi est un s.e.v de E .

Théorème - Intersection de s.e.v

Démonstration
Pour tout i ⇐ I , 0 ⇐ Fi , donc 0 ⇐⋂

i⇐I Fi .
Soient ω,µ ⇐K, x, y ⇐⋂

i⇐I Fi ,
alors pour tout i ⇐ I , x ⇐ Fi y ⇐ Fi et donc ωx +µy ⇐ Fi car Fi

sev.
Ainsi ωx +µy ⇐⋂

i⇐I Fi .

Si A ↙ E , A = {B sev de E | A ↙ B} est non vide et admet un plus petit élément :

Soit A ↙ E . L’ensemble des s.e.v de E contenant A admet un plus petit
élément pour l’inclusion que l’on appelle sous-espace vectoriel engendré
par A, noté vect(A). C’est l’intersection de tous les s.e.v contenant A.

Définition - Sous espace engendré par une partie

La réunion de deux espaces vectoriels n’est pas
(en général) un espace vectoriel.
Par contre, certains auteurs notent A

∨
B ,

l’opération vect(A,B) définie un peu plus bas.
Cette notation est très compatible avec la suite
du cours. On peut la garder en tête pour la
suite. . .

Pour aller plus loin - Pas de stabilité par
réunion. mais une nouvelle opération à la
place

STOP Remarque - Unicité
On notera que le plus petit élément est unique.

Démonstration
Il faut montrer l’existence, il s’agit de < A >:=⋂

B⇐A B .
1. En effet, cet inclusion donne bien un sous-espace vectoriel de
E .
2. < A > contient A, car tous les B intersectés contiennent A.
3. Si C est un sous-espace contenant A, alors C ⇐ A , donc <
A >↙C . C’est le plus petit

STOP Remarque - Si A est déjà un espace vectoriel
Si A est un s.e.v de E alors vect(A) = A.

Soit A ↙ E , A ⇔=∝.
vect(A) est l’ensemble des combinaisons linéaires d’éléments de A :

vect(A) = {ω1 ·a1 +·· ·+ωn ·an ; n ⇐N∋, (ω1, . . . ,ωn) ⇐Kn , (a1, . . . , an) ⇐ An}.

On peut donc écrire :

u ⇐ vect(A) △▽̸ n ⇐N∋,̸ ω1, . . . ,ωn ⇐K,̸ a1, . . . , an ⇐ A tels que u =
n∑

i=1
ωi ai

Théorème - Caractérisation
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vect(A) est l’ensemble des combinaisons linéaires presque nulle d’élé-
ments de A.

Démonstration
Notons momentanément C = {ω1.a1+·· ·+ωn .an ; n ⇐N∋, (ω1, . . . ,ωn) ⇐
Kn , (a1, . . . , an) ⇐ An}. On veut montrer que vect(A) =C .
• C contient le vecteur nul (pour n = 1, a1 ⇐ A,ω1 = 0), et est
stable par combinaison linéaire

(une combinaison linéaire de deux éléments eux même com-
binaison linéaire d’éléments de

A est une combinaison linéaire d’éléments de A)
et A ↙C (n = 1, a1 ⇐ A,ω1 = 1) :
C est un s.e.v. de E contenant A, donc par définition vect(A) ↙

C .
• D’autre part si (a1, . . . , an) ⇐ An , alors (a1, . . . , an) ⇐ vect(A)n

et comme vect(A) s.e.v. toute combinaison linéaire des ai ap-
partient à vect(A)

et donc C ↙ vect(A).
Finalement on a bien vect(A) =C .

On appelle sous-espace vectoriel engendré par la famille (xi )i⇐I d’éléments
de E le s.e.v engendré par {xi ; i ⇐ I }. C’est donc l’ensemble des combinai-
sons linéaires (finies) des xi .

Définition - Sous espace vectoriel engendré par une famille

Exemple - Dans le Rev C
Par exemple, dans leR-e.vC, vect(1) =R, vect(i ) = iR, vect(1, i ) =
C.

Cela peut servir à prouver qu’un ensemble est un espace vectoriel ; par
exemple

{(x, y, z) ⇐R3 |̸(ω,µ) ⇐R2, (x, y, z) =ω(1,0,1)+µ(2,2,1)}

= vect
(
(1,0,1), (2,2,1)

)

est un s.e.v de R3.

Savoir faire - Montrer un espace vectoriel par famille génératrice

L’exercice suivant est à savoir faire :
Exercice
Caractériser par une équation le s.e.v de R3 engendré par A = {(1,1,1), (1,0,1)}.

3.4. Somme de sous-espaces vectoriels

F +G = vect(F ↑G)

Soit (E ,+, .) unK-e.v.

Soient F1, . . . ,Fn des s.e.v de E (n ⇐ N∋). On appelle somme des s.e.v Fi
l’ensemble

F1 +F2 +·· ·+Fn = {x1 +x2 +·· ·+xn |≃i ⇐ [[1,n]], xi ⇐ Fi }

Définition - Somme d’espaces vectoriels

Voici la définition exacte de la réunion vecto-
rielle : A+B = A

∨
B

Pour aller plus loin - Moins loin
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F1+F2+·· ·+Fn est un s.e.v de E et on a F1+F2+·· ·+Fn = vect(F1↑ . . .↑Fn)
(c’est le plus petit s.e.v de E qui contienne F1 ↑ . . .↑Fn .)

Théorème - Addition et partie engendrée

Démonstration

• Montrons d’abord que F1 +F2 +·· ·+Fn est un s.e.v de E :
Comme 0E = 0E + ·· · + 0E et que 0E ⇐ Fi pour tout i , on a
0E ⇐ F1 +F2 +·· ·+Fn .
D’autre part si x = ∑n

i=1 xi , y = ∑n
i=1 yi avec xi , yi ⇐ Fi et

(ω,µ) ⇐K2, alors

ω.x+µ.y =
n∑

i=1
ω.xi+µ.yi ⇐ F1+F2+·· ·+Fn car ω.xi+µ.yi ⇐ Fi ( s.e.v.)

• On note momentanément F = F1 +F2 +·· ·+Fn . Montrons
que F = vect(F1 ↑ . . .↑Fn) par double inclusion.
↙ Soit x = ∑n

i=1 xi ⇐ F (xi ⇐ Fi ). On a ≃i , xi ⇐ F1 ↑ . . .↑Fn
et vect(F1↑ . . .↑Fn) est, par caractérisation, l’ensemble des
C.L. des éléments de F1↑. . .↑Fn , donc x ⇐ vect(F1↑. . .↑Fn)
et on a la première inclusion.
⊃ ≃i ⇐ I ,Fi ↙ F car xi ⇐ Fi s’écrit xi = 0E +·· ·+xi +·· ·+0E

où 0E ⇐ F j avec j ⇔= i , d’où xi ⇐ F .
Donc F1 ↑ . . . ↑ Fn ↙ F et par définition de vect(F1 ↑ . . . ↑
Fn), on a donc vect(F1 ↑ . . . ↑ Fn) ↙ F , d’où la deuxième
inclusion.

Exercice
Dans R3, vérifier que F = {(x,0,0); x ⇐ R} et G = {(x, x,0); x ⇐ R} sont des s.e.v de R3 et
déterminer F +G .

Nous avons vu que F →G est un sev. Il n’en est pas de tout du même de F ↑G .
Cette notion est remplacée dans le cadre des espaces vectoriels par F +G .

On a alors
x ⇐ F →G △▽ x ⇐ F et x ⇐G ,
x ⇐ F +G △▽̸ a ⇐ F,b ⇐G tels que x = a +b.

Savoir faire - Caractérisations. x ⇐ F →G, x ⇐ F +G

• Si x ⇐ F +G et x ∀G ⇔▽ x ⇐ F .
• E = F ↘G = F ↘H ⇔▽G = H .

Ecrire cela serait confondre les notions de supplémentarité et de
complémentarité !

Attention - Deux erreurs classiques qui en découlent

Somme directe
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Soient F1, . . . ,Fn des s.e.v de E (n ⇐N∋). Il y a équivalence de :

(i ) tout élément x de F1 +F2 +·· ·+Fn s’écrit de manière unique sous la forme

x = x1 +x2 +·· ·+xn avec ≃i , xi ⇐ Fi

(i i ) ≃(x1, x2, . . . , xn) ⇐ F1 ↗F2 ↗ . . .↗Fn , x1 +x2 +·· ·+xn = 0E ▽≃i , xi = 0E

Si ces propriétés sont vérifiées, on dit que les Fi sont en somme directe et
on note leur somme

F1 ↘F2 ↘ · · ·↘Fn =
n⊕

i=1
Fi .

Proposition - Somme directe

En science physique, un excellent réflexe fré-
quent est celui qui affirme : un vecteur est nul
si et seulement si ses coordonnées sont nulles.
On passe ainsi aisément d’une équation (vec-
torielle) à n équation scalaire.
Il arrive de faire la transformation dans les
deux sens. . .

Pour aller plus loin - Vision physicienne Démonstration

On note G = F1 + F2 + . . .Fn . On peut encore raisonner avec
l’application :

ε : F1 ↗F2 ↗ · · ·↗Fn ⇑↓G , (x1, x2, . . . xn) ⇒⇑↓ x1 +x2 +·· ·+xn

Il est affirmé que les Fi sont en somme directe si ε est injective
(1ere proposition).
Et que celle-ci est équivalent à l’injectivité sur 0.
En effet :

ε(x) =ε(y) ⇓ x1+x2+·· ·+xn = y1+y2+. . . yn ⇓ (x1⇑y1)+(x2⇑y2)+. . . (xn⇑yn) = 0

L’injectivité en 0 assure alors ≃ i ⇐Nn , xi ⇑ yi = 0, donc x = y et
ε est injective.
La réciproque est triviale

Les
deux droites vectoriels sont toutes les deux
supplémentaires au plan z = 0 dans R3.
On peut y voir la décomposition unique de
z = x1 + y1 = x2 + y2 pour ces deux espaces
supplémentaires. Même si y1 et y2 ⇐ P

(même plan), ce sont néanmoins des vecteurs
différents.

Représentation - Deux espaces différents
supplémentaires à un même troisième

Soient F1 et F2 deux s.e.v de E . F1 et F2 sont en somme directe si et
seulement si F1 →F2 = {0E }.

Corollaire - Cas de 2 s.e.v

F1 et F2 deux s.e.v de E sont dits supplémentaires si E = F1 ↘F2,
ce qui équivaut à :

1. E = F1 +F2
2. F1 →F2 = {0E }

ou à
tout vecteur de E se décompose de manière unique comme somme d’un
vecteur de F1 et d’un vecteur de F2.

Définition - Espaces supplémentaires

Lorsqu’on écrit : E = F1 ↘F2, il y a bien DEUX affirmations (deux propo-
sitions ou deux verbes) :

— E = F1 +F2
— La somme est directe : F1 ↘F2 ou F1 →F2 = {0E }

Attention - Notation piégée
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Exemple - Dans le R-e.v C
C=R+ iR.

STOP Remarque - Autour de la notion de supplémentaire
• On dit aussi que F2 est un supplémentaire de F1 (dans E).
• Ne pas confondre supplémentaire et complémentaire, le complémentaire
d’un s.e.v n’est jamais un s.e.v
• E admet un seul supplémentaire, c’est {0E } (et réciproquement).
• Il existe, en général, une infinité de supplémentaires d’un s.e.v (voir l’illus-
tration dans la marge)

Montrer que E = F ↘G , c’est montrer que E = F +G et F →G = {0}.
Très souvent on procède par analyse-synthèse :

— L’analyse : Supposons que E = F +G .
Soit x ⇐ E , il existe (y, z) ⇐ F ↗G tel que x = y + z.

Le problème : pour UN x donné, il y a DEUX vecteurs y et z,
ce qui est trop de liberté Il faut découpler ces vecteurs. Ainsi,
après analyse (lié aux conditions du problème), on trouve y dé-
fini explicitement en fonction de x (uniquement : i.e. plus de z)
et également on trouve z défini explicitement en fonction de x
(uniquement : i.e. plus de y).
Fin de l’analyse. On ne sait pas si le couple (y, z) existe bien, mais
s’il existe il est unique.

— La synthèse. On fixe x ⇐ E et on reprend le couple (y, z) défini
comme à la fin de l’analyse.
On vérifie tour à tour que :
— y ⇐ F
— z ⇐G
— x = y + z.
Fin de la synthèse. On a bien, pour tout x ⇐ E , ̸ (y, z) ⇐ F ↗G tel
que x = y + z, ie. E ↙ F +G .

(L’inclusion réciproque est donné par F ↙ E , G ↙ E , E espace
vectoriel.)

Savoir faire - Montrer que deux espaces vectoriels sont supplémen-
taires

Dans ce genre d’exercice, on exploite souvent le raisonnement en analyse-
synthèse.
Exercice

Les applications linéaires (et les espaces vec-
toriels associés) se sont imposées petit à pe-
tits dans les manuel de mathématiques supé-
rieures au début du XXe siècle. . . Elles étaient
initialement considérée avec beaucoup d’at-
tention, le domaine semblait difficile (à l’in-
verse des groupes. . .). Aujourd’hui, cela se fait
vite dès les premiers mois dans les études su-
périeures, partout dans le monde.
Cette universalité est étonnante : la défini-
tion des espaces vectoriels était loin d’être uni-
forme dans chaque pays. Il semble que ce
soit la multiplication des espaces vectoriels de
fonctions (et en particulier leurs exploitation
par Stefan Banach) qui ait justifié cette intro-
duction de plus en plus précoce.

1
JAN Histoire - Introduction des espaces vecto-

riels et des applications linéaires

Montrer que P (ensembles des fonctions paires) et I (ensemble des fonctions impaires)
sont des s.e.v supplémentaires de F (R,R).

4. Applications linéaires

4.1. Définitions et exemples

Soit u une application de E dans F . On dit que u est linéaire si

(1) ≃(x, y) ⇐ E 2,u(x +
E

y) = u(x)+
F

u(y)

(2) ≃x ⇐ E ,≃ω ⇐K,u(ω .
E

x) =ω .
F

u(x)

Définition - Application linéaire
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u : E ↓ F est linéaire si et seulement si

≃(x, y) ⇐ E 2,≃(ω,µ) ⇐K2,u(ω.x +µ.y) =ω.u(x)+µ.u(y)

Savoir faire - Montrer qu’une application est linéaire

Démontrons qu’on a bien cette équivalence.

Démonstration
▽ évident
△ en prenantω=µ= 1 on a u(x+y) = u(x)+u(y) et en prenant
µ= 0 on a u(ω.x) =ω.u(x)

Soit u : E ↓ F une application linéaire. Alors

(1) u(0E ) = 0F

(2) ≃n ⇐N∋,≃(xi )1∞i∞n ⇐ E n ,≃(ωi )1∞i∞n ⇐Kn ,u
( n∑

i=1
ωi .xi

)
=

n∑

i=1
ωi .u(xi )

Dans le cas d’une famille infinie (xi )i⇐I , si (ωi )i⇐I est une famille presque
nulle, on a aussi

u
(∑

i⇐I
ωi .xi

)
=

∑

i⇐I
ωi .u(xi ).

L’image d’une combinaison linéaire est donc la combinaison linéaire des
images (avec les mêmes coefficients).

Proposition - Image par une application linéaire

On appelle
— isomorphisme de E dans F toute application linéaire bijective de E

dans F ;
— endomorphisme de E toute application linéaire de E dans E ;
— automorphisme de E un isomorphisme de E dans E ;
— forme linéaire sur E toute application linéaire de E dansK.

On note
— L (E ,F ) l’ensemble des applications linéaires de E dans F (éventuel-

lement LK(E ,F ) s’il y a une ambiguité sur le corpsK) ;
— L (E ,K) ou E∋ l’ensemble des formes linéaires sur E , aussi appelé

dual de E ;
— L (E) l’ensemble des endomorphismes de E (i.e. L (E ,E)).

Définition - endo/iso/auto -morphisme

Ce que nous apprend Newton des lois de la
physique (démontré d’une certaine façon par
les formules de Taylor) : le monde est en pre-
mière approximation linéaire.
Une application quelconque vérifie toujours
au voisinage d’un point M0(x0, y0, z0) :

f (M) = f (M0)+⇑⇑⇑⇑↓u f ,M0 (x ⇑x0, y ⇑ y0, z ⇑ z0)

+o(∃(x ⇑x0, y ⇑ y0, z ⇑ z0)∃)

avec ⇑⇑⇑⇑↓u f ,M0 , une application linéaire !

Pour aller plus loin - Pourquoi s’intéresser
aux applications linéaires?

STOP Remarque - Eléments neutres
I dE ⇐L (E) (élément neutre pour ¬) ;
l’application nulle de E dans F est linéaire (élément neutre pour +).

Exemple - Donner des exemples
• endomorphismes de R
• homothéties de E
• endomorphisme du R-e.v. C
• applications linéaires du R-e.v. C dans R
• dans C 1(R,R) ou C 1(R,C)
• dansK[X ]

Exercice
Soit E =C∈(R,R) le sous-espace vectoriel de F (R,R) constitué des fonctions indéfiniment
dérivables sur R. Soit D l’application qui à une fonction de E associe sa dérivée et I l’appli-
cation qui à une fonction f associe la primitive de f qui s’annule en 0.
Vérifier que D et I sont des endomorphismes de E . S’agit-il d’isomorphismes? Que peut
on dire de D ¬ I et de I ¬D ?
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L’exemple précédent montrer qu’il faut bien les deux conditions f ¬ g =
i d ET g ¬ f = i d , pour pouvoir affirmer que f (ou g ) est bijective. . .

Attention - Montrer la bijectivité

Exercice
Soient F et G deux sous-espaces vectoriels d’un K-e.v. E . On considère l’application

ϖ : F ↗G ↓ E
(x, y) ⇒↓ x + y.

Montrer que ϖ est linéaire. A quelle condition sur F et G est-ce un isomorphisme? Quel est
alors l’isomorphisme réciproque?

Soit u ⇐L (E ,F ). On appelle
— noyau de u, l’ensemble Keru = {x ⇐ E |u(x) = 0F } = u⇑1({0F })
— image de u, l’ensemble Im u = {y ⇐ F |̸x ⇐ E , y = u(x)} = u(E)

Définition - Image et noyau

Soit u ⇐L (E ,F ).
— Keru est un s.e.v de E , Im u est une s.e.v de F
— Plus généralement, si V est un s.e.v de E et W un s.e.v de F , alors

u⇑1(W ) est s.e.v de E et u(V ) est un s.e.v de F .
On rappelle que u(V ) = {u(x), x ⇐V } et u⇑1(W ) = {x ⇐ E | u(x) ⇐W }

Théorème - Transformation par u linéaire, en sev

Démonstration
On démontre le second cas, avec V = E et W = {0}, on en déduira
le résultat pour Im u et Keru respectivement.
Soient ω,µ ⇐K, x, y ⇐ u(V ).

Il existe a,b ⇐V tel que x = u(a) et y = u(b),
Donc ωx +µy = u(ωa +µb) ⇐ u(V ), car u est linéaire.
Donc u(V ) est un sev de F .

Soient ω,µ ⇐K, x, y ⇐ u⇑1(W ).
Donc u(ωx +µy) =ωu(x)+µu(y), car u est linéaire.
Comme W est un espace vectoriel, ωu(x)+µu(y) ⇐W ,
ainsi ωx +µy ⇐ u⇑1(W ). Donc u⇑1(W ) est un sev de E .

Exercice
Montrer que l’application

u : R3 ↓R2

(x, y, z) ⇒↓ (x + y ⇑ z, x ⇑ y +2z)

est une application linéaire de R3 dans R2 et déterminer son noyau et son image.

Ces théorèmes ainsi que les définitions asso-
ciées nous rappelle les résultat vu sur les mor-
phismes de groupes

Pour aller plus loin - Rappel

Soit u ⇐L (E ,F ).
u est injective ⇓ Ker u = {0E }

u est surjective ⇓ Im u = F

Théorème - Critère d’injectivité et de surjectivité
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Démonstration
Par linéarité de u, u(x) = u(y) ⇓ u(x ⇑ y) = 0

u est injective △▽ [≃ x, y ⇐ E , u(x) = u(y) ▽ x = y]
△▽ [≃ x, y ⇐ E , x ⇑ y ⇐ Keru ▽ x ⇑ y = 0]
△▽ [≃ z ⇐ E , z ⇐ Keru ▽ z = 0]
△▽ Keru = {0}

u est surjective △▽ [≃ y ⇐ F , ̸ x ⇐ E tel que y = u(x)]
△▽ [≃ y ⇐ F , y ⇐ Im F ] △▽ F ↙ Im u

L’inclusion réciproque étant toujours vraie :
u est surjective △▽ Im u = F

Exercice
L’application linéaire D qui à P ⇐K[X ] associe P ′ est-elle injective? surjective?

4.2. Cas général : structure de L (E ,F )

(L (E ,F ),+, .) est unK-espace vectoriel.
Théorème - Structure d’espace vectoriel

STOP Remarque - Interprétation
Cela signifie en particulier que la somme de deux applications linéaires est
linéaire, ainsi que ω. f .
On ne fera pas de démonstration.

Soient E ,F,G troisK-e.v. et u ⇐L (E ,F ), v ⇐L (F,G). Alors v ¬u ⇐L (E ,G).
Théorème - Composition linéaire

Démonstration

Soient ω,µ ⇐K et x, y ⇐ E .

(v¬u)(ωx+µy) = v
(
u(ωx+µy)

)
= v(ωu(x)+µu(y)) =ωv(u(x))+µv(u(y))

=ω(v ¬u)(x)+µ(v ¬u)y

La réciproque d’un isomorphisme de E dans F est un isomorphisme de F
dans E .

Théorème - u⇑1 ?

Démonstration

Soit u un isomorphisme de E sur F .
Alors u est bijective et admet une application réciproque u⇑1,
également bijective.
Et u⇑1 est un morphisme : Pour tout ω1ω2 ⇐ K,≃ y1, y2 ⇐ F, x1 =
u⇑1(y1), x2 = u⇑1(y2),

u⇑1(ω1 y1+ω2 y2) = u⇑1(ω1u(x1)+ω2u(x2)) = u⇑1(u(ω1x1+ω2x2))

=ω1x1 +ω2x2 =ω1u⇑1(y1)+ω2u⇑1(y2)
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Deux K-e.v. E et F tels qu’il existe un isomorphisme de E dans F sont dits
isomorphes.

Définition - Espaces isomorphes

Soit u ⇐L (E ,F ). Alors l’ application

L (F,G) ↓L (E ,G)
v ⇒↓ v ¬u

est linéaire i.e
(ω.v1 +µ.v2)¬u =ω.v1 ¬u +µ.v2 ¬u

Soit v ⇐L (F,G). Alors l’ application

L (E ,F ) ↓L (E ,G)
u ⇒↓ v ¬u

est linéaire i.e
v ¬ (ω.u1 +µ.u2) =ω.v ¬u1 +µ.v ¬u2

Théorème - Linéarité de la composition

Démonstration

Nous ferrons qu’un seul cas : la linéarité de

ϑ
ϑ : L (F,G) ↓ L (E ,G)

v ⇒↓ v ¬u

Pour tout ω1,ω2 ⇐K, v1, v2 ⇐L (E ,F ),

ϑ(ω1v1+ω2v2) = (ω1v1+ω2v2)¬u =ω1v1(u(·)+ω2v2(u(·)) =ω1ϑ(v1)+ω2ϑ(v2)

4.3. Cas particulier de L (E)

Soit E unK-e.v.
— (L (E),+) est un groupe commutatif ;
— (L (E),+, .) est unK-espace vectoriel ;
— (L (E),+,¬) est un anneau non commutatif (sauf si E de dimen-

sion finie égale à 1), en particulier la composée de deux endomor-
phismes de E est un endomorphisme de E ;

— ≃ω ⇐K,≃(u, v) ⇐L (E)2, (ω.v)¬u =ω.(v ¬u) = v ¬ (ω.u)
On résume ces propriétés en disant que (L (E),+,¬, .) est une algèbre sur
K.

Théorème - Structure de L (E)

Puisque (L (E),+,¬) est un anneau, l’ensemble
(L (E),¬)↗ des inverses de L (E), plutôt noté
(GL(E),¬) est un groupe : le groupe linéaire.

Pour aller plus loin - Groupe des inverses

Exercice
Donner un contre-exemple pour la commutativité.

Soit u ⇐L (E). On définit pour n ⇐N un par

u0 = I dE et ≃n ↖ 1,un = u ¬un⇑1 = u ¬u . . .¬u︸ ︷︷ ︸
n f acteur s

.

Proposition - Règles de calcul dans L (E)
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Pour u et v qui commutent (u ¬ v = v ¬u) on a les formules suivantes :

(u + v)n =∑n
k=0

(n
k

)
uk ¬ vn⇑k (Formule du binôme)

un ⇑ vn = (u ⇑ v)¬ (un⇑1 +un⇑2 ¬ v + . . .+u ¬ vn⇑2 + vn⇑1) (Factorisation)
I dE ⇑ vn = (I dE ⇑ v)¬ (I dE + v + v2 + . . .+ vn⇑2 + vn⇑1)

On note parfois u ¬ v = uv .

En algèbre, uv n’est JAMAIS u ↗ v , cela n’a pas de sens.
(Il n’y a pas de produit dans les espaces vectoriels)

Attention - uv

Il faut typiquement interpréter ces relations
avec des polynômes.

Ici, on note P =
n∑

k=0
ak X k , Q = X et T =

m∑
k=0

bk X k .

On a donc v = P (u), u =Q(u) et w = T (u).
Puis v ¬ u = P (u) ¬Q(u) = (P ↗Q)(u) = (Q ↗
P )(u) = u ¬ v .
De même v ¬w = (P↗T )(u) = (T ↗P )(u) = w ¬v

Pour aller plus loin - Relation polynomiale
Application - A compléter

On obtient donc :

(u + v)2 = ,u2 ⇑ v2 = ,u3 ⇑ v3 =
STOP Remarque - Démonstration

Il s’agit toujours de la même démonstration, celle vu avec les polynômes.
Exercice

Soient E un K-e.v. et u ⇐ L (E). Montrer que si v =
n∑

k=0
ak uk (avec n ⇐N, ak ⇐K), alors

v commute avec toute puissance de u, puis que v commute avec w =
m∑

k=0
bk uk (avec

m ⇐N, bk ⇐K).

La réciproque d’un automorphisme de E est un automorphisme de E .
L’ensemble des automorphismes de E muni de la loi ¬ est donc un groupe
(en général non commutatif) appelé groupe linéaire et noté GL(E).

Proposition - Groupe linéaire

Démonstration
Un automorphisme est un isomorphisme de E sur E .
On a vu que sa réciproque est également un isomorphisme de E
sur E , donc un automorphisme.

Pour ω ⇐ K, l’endomorphisme ω.I dE : x ⇒↓ ω.x s’appelle l’ homothétie de
rapport ω.
Une homothétie de rapport non nul est un automorphisme.

Définition - Homothéties de E

4.4. Projecteurs et symétries

Projecteurs

Soient E1 et E2 deux sous-espaces vectoriels supplémentaires de E . On sait
que tout x ⇐ E s’écrit de manière unique sous la forme x = x1 + x2 avec
x1 ⇐ E1 et x2 ⇐ E2.
L’application

p : E ↓ E
x ⇒↓ x1

s’appelle le projecteur sur E1 parallèlement à E2 (ou de direction E2) ;

q = I dE ⇑p : E ↓ E
x ⇒↓ x2

Définition - Projecteur
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s’appelle le projecteur sur E2 parallèlement à E1 (ou de direction E1).
On dit que p et q sont des projecteurs associés (car ils sont définis par la
même décomposition de E en s.e.v supplémentaires).

STOP Remarque - Rappel (?) de la projection dans le plan
Le terme de projecteur généralise la notion de projection dans l’ensemble
des vecteurs du plan ou de l’espace. Toutefois on parle également de projec-
tion sur E1 parallèlement à E2.

STOP Remarque - A partir de l’analyse-synthèse

Ici R3 = vect(a)+P .
On projete u sur P , on voit que u = a′ + p(u)
avec a′ et a colinéaires, alors que p(u) ⇐P .

Représentation - Représentation de la pro-
jection

L’analyse-synthèse, conduit souvent à exprimer y (et z) explicitement en
fonction de x.
Cette expression explicite est la définition explicite du projecteur.

On suppose que E = E1 ↘E2. Soit p le projecteur sur E1 parallèlement à E2,
alors :

⇑p est un endomorphisme de E ;
⇑E1 = {x ⇐ E |p(x) = x} (ensemble des invariants par p);
⇑ Im p = E1 et Ker p = E2;
⇑p ¬p = p.

Proposition - Propriétés premières d’un projecteur

Démonstration

• Notons d’abord que p : E ↓ E .
Soient x = x1 +x2 et y = y1 + y2, deux vecteurs de E décomposés
sur E1 ↘E2.
Soient ω,µ ⇐K.

p(ωx+µy) = p((ωx1 +µy1)︸ ︷︷ ︸
⇐E1

+ (ωx2 +µy2)︸ ︷︷ ︸
⇐E2

) =ωx1+µy1 =ωp(x)+µp(y)

Donc p est bien un endomorphisme de E .
• Si x ⇐ E1, x = x +0 est la décomposition de x sur E1 ↘E2, donc
p(x) = x.
Réciproquement, si p(x) = x, comme p(x) ⇐ E , alors x ⇐ E
Par double inclusion E = {x | p(x) = x}. • x ⇐ E1, alors x = p(x)
donc x ⇐ Im p.

Et réciproquement, par définition de p, Im p ↙ E1.
Si x ⇐ E2, alors la décomposition de x selon E1 ↘E2 est x = 0+ x,
donc p(x) = 0.
Réciproquement, comme x ⇑p(x) ⇐ E2, si p(x) = 0, alors x ⇐ E2.
• Enfin, si x = x1 + x2, on a p2(x) = p(p(x)) = p(x1) = x1, car
x1 ⇐ E1, donc p2(x) = p(x).

STOP Remarque - Relation entre les deux projecteurs
On a aussi p ¬q = q ¬p = 0L (E).
En effet si x = x1 +x2, p ¬q(x) = p(x2) = 0. . .

Soit p un endomorphisme de E .
Alors p est un projecteur si et seulement si p ¬p = p.
On a alors E = Im p ↘Ker p et p est le projecteur sur Im p parallèlement à
Ker p.

Théorème - Caractérisation
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Démonstration
On a vu l’implication dans le sens direct.
Réciproquement, su p2 = p.

Notons E1 = Im p et E2 = Ker p.
Si x ⇐ E1→E2, alors il existe a tel que x = p(a), donc 0 = p(x) =

p2(a) = p(a) = x.
On a donc la somme directe E1 ↘E2.

Si x ⇐ E , alors x = p(x)+ (x ⇑p(x)).
Or p(x) ⇐ Im p et p[(x ⇑p(x))] = p(x)⇑p2(x) = 0, donc

x ⇑p(x) ⇐ Ker p.
Les deux espaces sont supplémentaires : E = E1 ↘E2.

Enfin, p est bien la projection sur E1(= Im p) parallèlement à
E2(= Ker p)

Symétries

Soient E1 et E2 deux sous-espaces vectoriels supplémentaires de E . On sait
que tout x ⇐ E s’écrit de manière unique sous la forme x = x1 + x2 avec
x1 ⇐ E1 et x2 ⇐ E2.
On appelle symétrie par rapport à E1 parallèlement à E2 (ou symétrie d’axe
E1 de direction E2) l’application

s : E ↓ E
x = x1 +x2 ⇒↓ x1 ⇑x2

Définition - Symétrie

Toujours avec les mêmes espaces vectoriels

Représentation - Représentation des symé-
tries On suppose que E = E1 ↘E2.

Soit s la symétrie par rapport à E1 parallèlement à E2. Alors
— si p est le projecteur sur E1 parallèlement à E2 on a s = 2p ⇑ I dE ;
— s est un endomorphisme de E et s ¬ s = I dE (on dit que s est une

involution de E).

Proposition - Propriétés premières de s

Démonstration

On garde les notations mises en place :
— ≃x ⇐ E , 2p(x) ⇑ x = 2x1 ⇑ (x1 + x2) = x1 ⇑ x2 = s(x) donc

s = 2p ⇑ I dE ;
— L (E) est un K-e.v. donc, comme p ⇐ L (E), on a aussi

s = 2p ⇑ I dE ⇐L (E) et

s ¬ s = (2p ⇑ I dE )¬ (2p ⇑ I dE ) = 4p ¬p ⇑4p + I dE = I dE .

Soit s ⇐L (E).
Alors s est une symétrie si et seulement si s ¬ s = I dE .
On a alors E = Ker(s ⇑ I dE )↘Ker(s + I dE ) et s est la symétrie par rapport à
Ker(s ⇑ I dE ) parallèlement à Ker(s + I dE ).

Théorème - Caractérisation
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Démonstration

Il reste à prouver que s ¬ s = I dE ▽ s symétrie.
Pour cela on pose p = 1

2 (s + I dE ) et on prouve que p est un
projecteur.
On a s ⇐L (E) ▽ p = 1

2 (s + I dE ) ⇐L (E) et

p ¬p = 1

4
(s + I dE )¬ (s + I dE ) = 1

4
(s ¬ s +2s + I dE ) = 1

2
(s + I dE ) = p

D’après la caractérisation des projecteurs, p est un projecteur
(sur ℑp parallèlement à Ker p) et d’après la proposition précé-
dente, 2p ⇑ I dE , c’est-à-dire s, est la symétrie par rapport à ℑp
parallèlement à Ker p. De plus

x ⇐ℑp ⇓ p(x) = x ⇓ 1

2
(s+I dE )(x) = x ⇓ s(x)⇑x = 0E ⇓ x ⇐ Ker(s⇑I dE )

x ⇐ Ker p ⇓ p(x) = 0E ⇓ 1

2
(s+I dE )(x) = 0E ⇓ s(x)+x = 0E ⇓ x ⇐ Ker(s+I dE )

et E = Ker(s ⇑ I dE )↘Ker(s + I dE ).

Exercice
E =R2, on désigne par f l’endomorphisme de E défini par f ((x, y)) = (2x ⇑ y,2x ⇑ y).
Montrer que f est un projecteur dont on précisera les éléments caractéristiques. On notera
E1 = Im f et E2 = Ker f .
Donner la détermination analytique de la symétrie par rapport à E2 parallèlement à E1.

5. Familles de vecteurs

E est unK-espace vectoriel.

5.1. Sur-famille, sous-famille

Soit (xi )i⇐I une famille d’éléments de E .
On appelle sur-famille de (xi )i⇐I toute famille (x j ) j⇐J d’éléments de E telle
que I ↙ J .
On appelle sous-famille de (xi )i⇐I toute famille (xk )k⇐K d’éléments de E
telle que K ↙ I .

Définition - Sur-famille et sous-famille

Exemple - Interprétation géométrique

Dans V , (ωi ,ωj ,ωi +2ωj ) est une sur-famille de (ωi ,ωi +2ωj ) ; (ωi ,ωj ) est une
sous-famille de (ωi ,ωj ,ωi ).

5.2. Familles génératrices de E

Soient x1, . . . , xn n éléments de E .
On dit que la famille (x1, . . . , xn) est génératrice de F si F = vect(x1, . . . , xn),
c’est-à-dire si

≃x ⇐ F, ̸(ω1, . . . ,ωn) ⇐Kn |x =
n∑

i=1
ωi · xi et ≃ i ⇐Nn , xi ⇐ F

Définition - Famille génératrice de F , sev de E
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Démonstration
C’est bien équivalent.
Si F = vect(x1, . . . , xn), alors pour tout i ⇐Nn , xi ⇐ vect(x1, . . . , xn) =
F ,

et toute combinaison linéaire des xi est dans F .
Réciproquement, si ≃x ⇐ F, ̸(ω1, . . . ,ωn) ⇐ Kn |x = ∑n

i=1ωi · xi ,
alors x ⇐ vect(x1, . . . , xn), donc F ↙ vect(x1, . . . , xn).

et, par ailleurs, tout xi ⇐ F , donc vect(x1, . . . , xn) ↙ F , car F est
un s.e.v.

STOP Remarque - Partie génératrice
On notera en particulier que si F = E , on a toujours xi ⇐ E et donc la première
caractéristique suffit.
Dans ce cas, on parle parfois de : partie {x1, . . . , xn} génératrice de E .
Exercice
Donner des exemples de familles génératrices de :
• R2

• R3

• le R-e.v C
• Kn [X ]
• dans F (R,R), une famille génératrice de {y ⇐F (R,R) | y ′′+ y ′ ⇑2y = 0} est

Parfois, en cherchant une famille génératrice de F , on se rend compte
que tout vecteur de F s’écrit comme une c.l. des vecteurs ( f1, f2, . . . fp ).
L’erreur consisterait à écrire que F = vect( f1, f2, . . . fp ).
La seule chose qu’on ait est une inclusion : F ↙ vect( f1, f2, . . . fp ).
Il faut donc vérifier l’inclusion réciproque : est-ce que tout fi ⇐ F (si F est
un bien un espace vectoriel, cela est suffisant)?

Attention - Ne pas s’emballer pour une famille génératrice

STOP Remarque - Permutation
L’image d’une famille génératrice de E par une permutation des vecteurs est
encore génératrice.
(Une famille est une liste ou un n-uplet et non un ensemble.
Si la famille (xi ) est génératrice de E , ajouter d’autres vecteurs à la famille ne
peut pas faire perdre le caractère générateur de la famille :

Toute sur-famille d’une famille génératrice de E est encore génératrice de
E .

Proposition - (Directe)

Démonstration
Si (xi )i⇐I est génératrice de E et que I ↙ J .
Alors tout élément de E est une combinaison de (xi )i↙I et donc
de la même combinaison de (xi )i⇐J .
Donc E ↙ vect(xi , i ⇐ J ).

En revanche, enlever des vecteurs peut être problématique

On dit que la famille (xi )i⇐I est une famille génératrice minimale de E ,
si toute sous-famille stricte (xi )i⇐H n’est pas génératrice (avec H ↙ I et
H ⇔= I )

Définition - Famille génératrice minimale de E
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La famille d’éléments de E (xi )i⇐I (I infini) est dite génératrice de E , si
vect((xi )i⇐I ) = E ,
c’est-à-dire si tout élément de E s’écrit comme une combinaison linéaire
d’un nombre fini de xi .

Définition - Généralisation (I potentiellement infini)

5.3. Familles libres, liées

Soit (x1, . . . , xn) une famille de vecteurs de E .
— On dit que cette famille est une famille libre (ou que x1, . . . , xn sont

des vecteurs linéairement indépendants) si

≃(ω1, . . . ,ωn) ⇐Kn , ω1.x1 +·· ·+ωn .xn = 0E ▽ω1 = . . . =ωn = 0

— Si la famille n’est pas libre, on dit qu’elle est liée (ou que x1, . . . , xn
sont des vecteurs linéairement dépendants), c’est-à-dire qu’il existe
(ω1, . . . ,ωn) ⇔= (0, . . . ,0) (non tous nuls) tel que ω1.x1+·· ·+ωn .xn = 0E .

Définition - Famille libre (ou vecteurs linéairement indépendants)

STOP Remarque - Interprétation importante!
On a donc qu’une famille est libre si la seule combinaison linéaire des élé-
ments de cette famille qui est nulle est celle dont les coefficients sont égaux à
0.

Une famille libre est d’une certaine façon un
ensemble de vecteurs qui n’a pas d’éléments
superflus.

Pour aller plus loin - Famille libre
Soit (x1, . . . , xn) une famille de vecteurs de E .

— Si n = 1, la famille est liée si et seulement si x1 = 0E .
— Si l’un des xi est égal à 0E , alors la famille est liée.
— Si xi = x j pour i ⇔= j , alors la famille est liée.
— Si l’un des vecteurs est combinaison linéaire des autres alors la

famille est liée.
— Réciproquement, si n ↖ 2 et si la famille est liée, alors l’un des

vecteurs au moins est combinaison linéaire des autres.

Proposition - Cas de famille liée

Pour les espaces vectoriels si il existe ωi ⇔= 0,

alors xi =
∑

j ⇔=i
⇑ω j
ωi

x j , i.e. xi est une CL des x j .
Ce raisonnement marche bien car K est un
corps et donc ωi est inversible (d’où la division
par ωi ).
Pour les modules, les éléments de l’anneau ne
sont pas (en règle générale) inversible. C’est es-
sentiellement ici que commence la différence
entre les modules et les espaces vectoriels.

Pour aller plus loin - Module (2)Démonstration

— 1 ·0E = 0E , donc (0E ) est liée.
Réciproquement si (x) est liée, alors ̸ ω ⇔= 0 tel que ωx = 0,
donc x = 0.

— Alors 0·x1+0·x2+·· ·+1·xi +0·xi+1+. . .0·xn = 0 avecωi ⇔= 0,
donc (x1, . . . xn) liée.

— De même avec ωi = 1, ω j =⇑1 et ≃ k ⇔= i , j , ωk = 0. . .
— Si xi =

∑

j ⇔=i
µ j x j , alors avec ωi = ⇑1 et ω j = µ j , on a

∑

k
ωk xk = 0 alors que les ωk ne sont pas tous nuls.

— Réciproquement, il existe i tel que ωi ⇔= 0.

Alors avec µ j =
⇑ω j

ωi
(pour j ⇔= i ), on a xi =

∑
j ⇔=i µ j x j .

STOP Remarque - Colinéarité (DEUX vecteurs)
(x1, x2) est une famille liée si et seulement si x1 et x2 sont colinéaires i.e.

̸ε ⇐K |x2 =εx1 ou x1 =εx2
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Exercice
Compléter :
• dans R3 avec x1 = (1,0,2), x2 = (1,1,1) = x3
(x1, x2, x3) est
(x1, x2,2x3) est
(x1, x2) est
(x1) est
• dans le R-e.v C
(1, i ) est
(1, j ) est
(1, i , j ) est

• dans R2,
(
(1,0), (0,1)

)
est

• dans Kn [X ], (1, X , X 2, . . . , X n ) est
• dans F (R,R), (cos,sin) est

Exercice classique :
Exercice
On note fk : x ⇒↓ e⇑kx . Montrer que pour tout n ⇐N, la famille ( f0, . . . , fn ) est une famille
libre de F (R,R).

La proposition suivante découle des définitions :

Une permutation des vecteurs ne change pas le caractère libre ou lié d’une
famille.
Toute sous-famille d’une famille libre est libre.
Toute sur-famille d’une famille liée est liée.

Proposition - Manipulation des termes de la famille

La démonstration, simple est néanmoins pédagogique.

Démonstration
Soit (ei )i⇐I une famille libre. Soit J ↙ I .
Soient (ω j ) j⇐J tel que

∑

j⇐J
ω j e j = 0.

alors quitte à considérer ωi = 0 si i ∀ J , on a
∑

i⇐I ωi ei = 0,
donc ≃ i ⇐ I , ωi = 0.

Et donc pour tout j ⇐ J , ω j = 0.
Soit (ei )i⇐I une famille liée et K tel que I ↙ K .

Si (ek )k⇐K est libre, alors toute sous-famille est libre.
Mais (ei )i⇐I est une sous-famille non libre, donc nécessaire-

ment (ek )k⇐K est liée.

On dit que la famille (xi )i⇐I est une famille libre maximale (dans E),
si toute sur-famille stricte (xi )i⇐J n’est pas libre (avec I ↙ J et I ⇔= J )

Définition - Famille libre maximale

Une famille infinie (xi )i⇐I d’éléments de E est dite libre si toute sous-
famille finie est libre.

Définition - Généralisation

Exemple - Famille libre infinie. . .
Dans K[X ], la famille (X k )k⇐N est une famille libre (infinie) de
K[X ] Et plus généralement :
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Toute famille de polynômes non nuls à coefficients dans K de degrés
échelonnés (distincts deux à deux...) est libre dansK[X ].

Théorème - Degrés echelonnés

Dans ce genre de proposition, il est possible de
faire indifféremment une démonstration par
l’absurde ou une récurrence

Pour aller plus loin - Autre démonstrationDémonstration

Soit (Pk )k⇐I une famille (finie ou infinie) de polynôme de degrés
échelonnés.
Soit J ↙ I , une famille finie d’éléments de I .

(P j ) j⇐J est une famille finie de polynôme de degré échelon-
née.

Soit (ω j ) ⇐KJ tel que
∑

j⇐J
ω j P j = 0 (polynôme nul).

Supposons qu’il existe j0 ⇐ J tel que ω j ⇔= 0.
{degP j | ω j ⇔= 0 et j ⇐ J } est un ensemble fini deN.
Il admet un plus grand élément d . On note également h, l’in-

dice de P j tel que degP j = d .
On a donc ωh ⇔= 0.
Si on dérive d fois le polynôme nul :

∑

j⇐J
ω j P j , on a

ωhP (d)
h +0 = 0

Or degPh = d , donc P (d)
h est une constante non nulle (d !ad )

et donc ωh = 0.
On a donc une contradiction et ainsi pour tout j , ω j = 0.
La famille (P j ) j⇐J est une famille libre. Ceci est vrai pour tout

J ↙ I .

5.4. Image d’une famille de vecteurs par une application li-
néaire

Soit u ⇐L (E ,F ).
— Si (xi )i⇐I est une famille de vecteurs de E alors

u
(
vect(xi , i ⇐ I )

)
= vect

(
u(xi ), i ⇐ I

)
.

— Si u est injective alors l’image par u d’une famille libre de E est une
famille libre de F .
Réciproquement, si l’image par u de n’importe quelle famille libre
de E est libre, alors u est injective.

— Si u est surjective alors l’image par u d’une famille génératrice de E
(s’il en existe) est une famille génératrice de F .

— Si u est un isomorphisme, l’image par u d’une base de E (s’il en
existe) est une base de F . Réciproquement, si il existe une base B
de E telle que son image par u soit une base de F , alors u est un
isomorphisme.

Théorème - Application linéaire et familles de vecteurs

Démonstration

—

y ⇐ u
(
vect(xi , i ⇐ I )

)
⇓̸ (ωi ) ⇐KI | y = u

(∑

i⇐I
ωi xi

)
=

∑

i⇐I
ωi u(xi ) ⇓ y ⇐ vect

(
u(xi ), i ⇐ I

)
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— Supposons que u soit injective. Considérons (e1, . . .ep ) une
famille libre de E .

Soient ω1, . . .ωp tels que
p∑

i=1
ωi u(ei ) = 0.

Par linéarité, on a donc
p∑

i=1
ωi ei ⇐ Keru = {0}.

Donc pour tout i ⇐Np , ωi = 0 car (e1, . . .ep ) est libre.
Par conséquent, la famille

(
u(e1),u(e2), . . .u(ep )

)
est

libre.
Pour la réciproque, on fait un raisonnement par l’absurde.

Supposons qu’il existe une famille libre de E , dont
l’image par u n’est pas libre.

Notons i tel que u(ei ) = ∑
k ⇔=i

µk u(ek ), donc par linéarité

ei ⇑
∑

k ⇔=i
µk ek ⇐ Keru.

Or le vecteur ei ⇑
∑

k ⇔=i
µk ek ⇔= 0 (sinon (e1,e2, . . .ep ) liée)

et Keru ⇔= {0}, et u non injective.

— Supposons que u est surjective et que (xi )i⇐I est généra-
trice de E .

Pour tout y ⇐ F , ̸ x ⇐ E tel que u(x) = y (surjectivité de
u).

Or ̸ (ωi ) ⇐KI tel que x = ∑
i⇐I
ωi xi .

Donc pour tout y ⇐ F , ̸ (ωi ) ⇐ KI tel que y =
u

(∑
i⇐I
ωi xi

)
=

∑

i⇐I
ωi u(xi ).

Donc
(
u(xi )

)
i⇐I est une famille génératrice de F .

— Si u est un isomorphisme, il est à la fois injectif est surjectif,
donc l’image d’une base est libre et génératrice donc est

une base de F .
Réciproquement,

Si il existe une base B de E d’image par u égale à une
base de F .

Alors, comme toute base est une famille libre, d’après
un critère précédent : u est injectif.

Et Im u = u(
⇑↓
B) = vect(B′) = F , donc u est surjective.

STOP Remarque - Réciproque pour la surjectivité?
Cela donnerait : Si l’image par u d’une (de toute) famille génératrice de E est
une famille génératrice de F alors u est surjective.
En fait, on n’a pas besoin du fait que la famille initiale soit génératrice de E .
Donc des hypothèses moins fortes.
Exercice
Retrouver l’image de l’application linéaire

u : R3 ↓R2

(x, y, z) ⇒↓ (x + y ⇑ z, x ⇑ y +2z)
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6. Bilan

Synthèse

↭ Les espaces vectoriels est le nom savant pour les ensembles dans
lesquels les éléments (vecteurs) peuvent sans difficulté s’additionner
et être multiplié par des constantes d’un corps K. Une combinaison
linéaire est par définition l’opération : (ω,µ,u, v) ⇐ K2 ↗ E 2 ⇒↓ ωu +
µv ⇐ E . E est donc le monde des combinaisons linéaires, ou plus
rapidement de la linéarité.

↭ Les éléments de E s’écrivent donc les uns à partir des autres par addi-
tions, ou multiplication par une constante. Les éléments se décrivent
les uns par rapport aux autres de manières multiples. Nous revien-
drons sur cette non-unicité au chapitre suivant

↭ Les applications linéaires sont les applications de transcriptions de
structure d’espaces, tout simplement. De nombreuses définitions
se développent alors : automorphismes, formes linéaires, noyau et
image. . .
Des propriétés se filent : l’injectivité de u est toujours associée à des
familles libres, la surjectivité de u est associée à des familles généra-
trices.

↭ Deux familles d’applications linéaires : les projecteurs et les symétries
vectorielles nous intéressent. La première permet de se concentrer sur
une partie de l’espace; on parle de la réduction de l’espace sur ces
sous-espaces.
C’est une partie importante en seconde année.

Savoir-faire et Truc & Astuce du chapitre

— Savoir-faire - Montrer que deux espaces vectoriels sont supplémen-
taires

— Savoir-faire - Démontrer que F est un (s.)ev (de E)
— Savoir-faire - Montrer un espace vectoriel par famille génératrice
— Savoir-faire - Caractérisations : x ⇐ F →G et x ⇐ F +G
— Savoir-faire - Montrer qu’une application est linéaire

Notations

Notations Définitions Propriétés Remarques
vect(A)(=< A >) Sous-espace vectoriel de E engendré par A vect(A) = {

∑k
i=1ωi ai k ⇐N,ωi ⇐K, ai ⇐ A} C’est le plus petit sev de E conte-

nant A.
E = F +G E est la somme des espaces F et G ≃ x ⇐ E , ̸ (y, z) ⇐ F ↗G tels que x = y + z F +G = vect(F ↑G)
E = F →G E est l’intersection des espaces F et G ≃ x ⇐ E , x ⇐ F et x ⇐G
E = F ↘G E est la somme directe des espaces F et G ≃ x ⇐ E , ̸ !(y, z) ⇐ F ↗G tels que x = y + z Deux informations : E = F +G et

F →G =∝
F = F1 ↘F2 · · ·↘Fk E est la somme directe des espaces Fi ≃ x ⇐ F , ̸ !(x1, x2, . . . xk ) ⇐ F1↗F2 · · ·↗Fk tels

que x =∑k
i=1 xi

Deux informations : F = F1 +
F2 + ·· · + Fk et l’écriture de 0 est
unique : 0 = ∑k

i=1 xi ▽ ≃ i ⇐ Nk ,
xi = 0

L (E ,F ) Ensemble des applications linéaires de E
vers F

On note L (E) l’espace L (E ,E)

GL(E) Groupe (linéaire) des automorphismes de
E

Im (u) Image de l’application u Im (u) = {u(x); x ⇐ E } ↙ F u surjectif ssi Im u = F
Ker(u) Noyau de l’application u Ker(u) = {x ⇐ E | u(x) = 0} ↙ E u injectif ssi Keru = {0}

Retour sur les problèmes

103. Enormément ! Il faut même souvent ajouter des hypothèses, ainsi en
mécanique quantique les objets sont des vecteurs d’un espace vecto-
riel normé muni d’un produit sesquilinéaire (=scalaire sur C) complet.
Il espace d’un espace dit de Hilbert.
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104. F →G est toujours un sev de E . Ce n’est pas le cas de E ↑G .
F ↑G est un sev de E ssi F ↙G ou G ↙ F

105. En prenant, dans R2, L = vect(0,1), M = vect(1,1) et N = vect(1,0), on
trouve M+N =R2 et donc L→(M+N ) = L, alors que L→M = {0} = L→N
et donc L → M +L → N = {0}. Pour le reste, on a les trois inclusions. A
démontrer. . .

106. Cours : Application linéaire

107. Cours : le rôle important des projecteurs !
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