Devoir à la maison n°3 CORRECTION

Exercice

On pose

$$H(x) = \int_{x}^{x^2} \frac{e^t}{t} dt.$$

Pour l'ensemble de l'exercice, on note $\varphi:]0, +\infty[\to \mathbb{R}, x \mapsto \frac{e^x}{x}.$

1. φ est continue sur \mathbb{R}_+^* (fraction de fonctions continues). Donc elle admet une primitive Φ , de classe \mathcal{C}^1 sur \mathbb{R}_+^* . On a alors pour tout x > 0, $H(x) = \Phi(x^2) - \Phi(x)$,

$$H$$
 est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et $H': x \mapsto 2x\Phi'(x^2) - \Phi'(x) = \frac{2e^{x^2} - e^x}{x}$

Puis,

$$H'(x) \leqslant 0 \Longleftrightarrow \frac{2e^{x^2} - e^x}{x} \leqslant \Longleftrightarrow 2e^{x^2} \leqslant e^x$$

Et comme la fonction ln est croissante, en composant par la fonction ln :

$$H'(x) \le 0 \Longleftrightarrow \ln 2 + x^2 \le x \Longleftrightarrow x^2 - x + \ln 2 \le 0$$

Le discriminant de $x^2 - x + \ln 2$ est $\Delta = 1 - 4 \ln 2 = 1 - \ln 16 < 0$ car 16 > e. Donc pour tout $x, x^2 - x + \ln 2 \ge 0$ et finalement :

H est strictement croissante sur \mathbb{R}_+^*

2. (a) φ est de dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, $\varphi'(x) = \frac{(x-1)e^x}{x^2}$. On a donc les variations suivantes :

On note dans le tableau $\lim_{x\to 0^+} \frac{e^x}{x} = +\infty$ et $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$ (croissance comparée).

(b) D'après le tableau de variation, pour tout x > 0, $\varphi(x) \ge e$, donc si x > 1 et ainsi $x^2 > x$:

$$H(x) \geqslant \int_{x}^{x^{2}} e dt = e(x^{2} - x) \underset{x \to +\infty}{\longrightarrow} +\infty$$

Et

$$\frac{H(x)}{x} \geqslant e(x-1) \underset{x \to +\infty}{\longrightarrow} +\infty$$

Donc, par majoration,

$$\lim_{x\to+\infty} H(x) = +\infty$$
 et \mathcal{C}_H admet une direction parabolique verticale en $+\infty$

(c) Pour l'étude en 0, le problème $(H \to \infty)$ est dû à la fraction $\frac{1}{t}$, c'est donc elle que l'on va encadrer :

$$\forall t \in [0,1]$$
 $\frac{1}{t} \leqslant \varphi(t) \leqslant \frac{e}{t}$

Puis si x < 1 et ainsi $x^2 < x$ et donc par croissance (ici les bornes sont dans le bon sens) :

$$[\ln(t)]_{x^2}^x = \int_{x^2}^x \frac{1}{t} dt \leqslant \int_{x^2}^x \varphi(t) dt \leqslant \int_{x^2}^x \frac{e}{t} dt = [e \ln(t)]_{x^2}^x$$

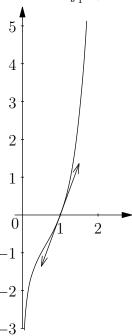
Donc en multipliant par (-1) (inversion des ordres) :

$$\ln(x) = -\ln x + \ln(x^2) \geqslant H(x) \geqslant e \ln x$$

On a donc par encadrement,

 $\lim_{x\to 0} H(x) = -\infty$, et \mathcal{C}_H admet une asymptote verticale d'équation x=0

On peut tracer H, en remarquant que $H(1) = \int_1^1 \frac{e^t}{t} dt = 0$ et $H'(1) = \frac{2e^1 - e^1}{1} = e^t$



Problème : Étude des intégrales de Wallis

On considère la suite (I_n) définie pour tout entier naturel n par :

$$I_n = \int_0^{\frac{\pi}{2}} (\sin x)^n \mathrm{d}x$$

I Etude classique de la suite (I_n)

1. On a $I_0 = \int_0^{\frac{\pi}{2}} (\sin x)^0 dx = \int_0^{\frac{\pi}{2}} 1 dx = \frac{\pi}{2}$. On a $I_1 = \int_0^{\frac{\pi}{2}} (\sin x)^1 dx = \int_0^{\frac{\pi}{2}} \sin x dx = [-\cos x]_0^{\pi/2} = -(0-1) = 1$. Donc

$$I_0 = \frac{\pi}{2} \text{ et } I_1 = 1$$

2. Les fonctions $u: x \mapsto \sin^{n+1}(x)$ et $v: x \mapsto -\cos x$ sont de classe \mathcal{C}^1 sur $[0, \frac{\pi}{2}]$, et $u': x \mapsto (n+1)\cos x \sin^n x$ et $v': x \mapsto \sin x$. On peut appliquer une intégration par parties:

$$I_{n+2} = \int_0^{\pi/2} u(x)v'(x)dx = \left[u(x)v(x)\right]_0^{\pi/2} - \int_0^{\pi/2} u'(x)v(x)dx$$
$$= \left[\sin^{n+1}(x)\cos(x)\right]_0^{\pi/2} + \int_0^{\pi/2} (n+1)\cos^2(x)\sin^n(x)dx$$

Or $\cos^2(x) = 1 - \sin^2(x)$ et $\cos(\frac{\pi}{2}) = 0$, $\sin^{n+1}(0) = 0$, donc

$$I_{n+2} = (n+1) \left(\int_0^{\pi/2} (n+1) \sin^n(x) dx - \int_0^{\pi/2} (n+1) \sin^{n+2}(x) dx \right) = (n+1)(I_n - I_{n+2})$$

Donc

$$I_{n+2} = \frac{n+1}{n+2}I_n$$

3. On a donc $I_{2(p+1)} = I_{2p+2} = \frac{2p+1}{2p+2}I_{2p}$, ou encore $I_{2p} = \frac{2p-1}{2p}I_{2(p-1)}$. Ainsi par télescopage multiplicatif:

$$\frac{I_{2p}}{I_0} = \prod_{k=1}^p \frac{I_{2k}}{I_{2(k-1)}} = \prod_{k=1}^p \frac{(2k-1)}{(2k)} = \frac{\prod_{k=1}^p (2k-1)}{\prod_{k=1}^p (2k)} = \frac{\prod_{k=1}^p (2k-1)(2k)}{\left(\prod_{k=1}^p (2k)\right)^2} = \frac{(2p)!}{(2^p)^2 (p!)^2}$$

On a donc $I_{2p+1} = \frac{2p}{2p+1}I_{2p-1}$, Ainsi par télescopage multiplicatif :

$$\frac{I_{2p+1}}{I_1} = \prod_{k=1}^p \frac{I_{2k+1}}{I_{2k-1}} = \prod_{k=1}^p \frac{(2k)}{(2k+1)} = \frac{\prod_{k=1}^p (2k)}{\prod_{k=1}^p (2k+1)} = \frac{\left(\prod_{k=1}^p (2k)\right)^2}{\prod_{k=1}^p (2k+1)(2k)} = \frac{(2^p)^2 (p!)^2}{(2p+1)!}$$

Finalement, comme $I_0 = \frac{\pi}{2}$ et $I_1 = 1$, on a donc

$$\forall p \in \mathbb{N}, \quad I_{2p} = \frac{(2p)!}{2^{2p}(p!)^2} \frac{\pi}{2} \text{ et } I_{2p+1} = \frac{2^{2p}(p!)^2}{(2p+1)!}$$

4. Pour tout $x \in [0, \frac{\pi}{2}]$, $0 \le \sin x \le 1$, donc en multipliant par $\sin^n x (\ge 0) : 0 \le \sin^{n+1} x \le \sin^n x$. Puis en intégrant : $I_{n+1} \le I_n$. Ainsi la suite (I_n) est décroissante et donc :

pour tout entier naturel $n: I_{n+2} \leq I_{n+1} \leq I_n$.

5. On divise tout par $I_n > 0$ (division de factorielles, non nulles) :

$$\frac{I_{n+2}}{I_n} \leqslant \frac{I_{n+1}}{I_n} \leqslant 1$$

Puis comme $I_{n+2}=\frac{n+1}{n+2}I_n$, on a donc $\frac{I_{n+2}}{I_n}=\frac{n+1}{n+2}$ Or la suite $(\frac{n+1}{n+2})$ converge vers 1. Donc d'après le théorème d'encadrement :

$$\left(\frac{I_{n+1}}{I_n}\right)$$
 admet une limite quand n tend vers $+\infty$ et $\lim \frac{I_{n+1}}{I_n}=1$

Or d'après les calculs précédents, pour tout $p \in \mathbb{N}$:

$$\frac{I_{2p+1}}{I_{2p}} = \frac{\frac{2^{2p}(p!)^2}{(2p+1)!}}{\frac{(2p)!}{2^{2p}(p!)^2}^{\frac{\pi}{2}}} = \frac{2^{4p}(p!)^4}{(2p)!(2p+1)!} \times \frac{2}{\pi} = \frac{2^{4p}(p!)^4}{(2p)!(2p)!} \times \frac{2}{(2p+1)\pi}$$

Donc

$$\frac{2^{4p}(p!)^4}{(2p)!^2p} = \frac{2p\pi}{p+1} \frac{I_{2p+1}}{I_{2p}} \xrightarrow[p \to +\infty]{} \pi$$

II Une autre méthode

1. L'application $x \mapsto \frac{\pi}{2} - x$ est \mathcal{C}^1 -bijective de $[0, \frac{\pi}{2}]$ sur $[0, \frac{\pi}{2}]$, le changement de variables $t = \frac{\pi}{2} - x$ donne donc

$$I_n = \int_0^{\pi/2} \sin^n x dx = \int_{\pi/2}^0 \sin^n (\frac{\pi}{2} - t)(-dt) = \int_0^{\frac{\pi}{2}} (\cos t)^n dt$$

Puis, de même le changement $u = \pi - t$, donne :

$$I_n = \int_0^{\pi/2} \cos^n t dt = \int_{\pi}^{\pi/2} \cos^n (\pi - u)(-du) = (-1)^n \int_0^{\frac{\pi}{2}} (\cos u)^n du$$

 $car cos(\pi - u) = -cos u$. Finalement :

$$I_n = \int_0^{\frac{\pi}{2}} (\cos t)^n dt = (-1)^n \int_{\frac{\pi}{2}}^{\pi} (\cos u)^n du$$

2. Soit $p \in \mathbb{N}$. On note J_p , l'intégrale

$$J_p = \int_0^{\pi} \left(\frac{e^{it} + e^{-it}}{2}\right)^{2p} dt = \frac{1}{2^{2p}} \int_0^{\pi} \sum_{k=0}^{2p} {2p \choose k} e^{kit} e^{-i(2p-k)t} dt$$

Puis par linéarité de l'intégrale

$$J_p = \frac{1}{2^{2p}} \sum_{k=0}^{2p} {2p \choose k} \int_0^{\pi} e^{i(2k-2p)t} dt$$

Ensuite, il s'agit d'intégrer $t \mapsto e^{2i(k-p)t}$. Si $k-p \neq 0$, une primitive est $t \mapsto \frac{1}{2i(k-p)}e^{2i(k-p)t}$.

Et si k=p, une primitive de cette fonction est tout simplement $t\mapsto t.$ Par conséquent :

$$J_p = \frac{1}{2^{2p}} \sum_{k=0, k \neq p}^{2p} {2p \choose k} \left[\frac{1}{2i(k-p)} e^{2i(k-p)t} \right]_0^{\pi} + \frac{1}{2^{2p}} {2p \choose p} [t]_0^{\pi}$$

Or $e^{i\pi} = -1$, et puisque $(-1)^{2k-2p} = 1$, on a :

$$J_p = \frac{1}{2^{2p}} \sum_{k=0, k \neq p}^{2p} {2p \choose k} \frac{1}{i2i(k-p)} (1-1) + \frac{1}{2^{2p}} {2p \choose p} \pi = \frac{1}{2^{2p}} {2p \choose p} \pi$$

3. Pour n = 2p, pair :

$$J_p = \int_0^{\pi} \cos^{2p}(t) dt = \int_0^{\pi/2} \cos^{2p}(t) dt + \int_{\pi/2}^{\pi} \cos^{2p}(t) dt = I_{2p} + (-1)^{2p} I_{2p} = 2I_{2p}$$

Et donc

$$I_{2p} = \frac{1}{2} \frac{1}{2^{2p}} {2p \choose p} \pi = \frac{(2p)!}{2^{2p} (p!)^2} \frac{\pi}{2}$$

III Une autre intégrale

Soit $n \in \mathbb{N}$, On fait le changement de variable $x = \sin t$, permis car $t \mapsto \sin t$ est bijective de $[0, \frac{\pi}{2}]$ sur [0, 1]: On a alors $\sqrt{1 - \sin^2(t)} = |\cos(t)| = \cos t$, pour $t \in [0, \frac{\pi}{2}]$ et $\mathrm{d}x = \cos t \mathrm{d}t$

$$L_n = \int_0^1 x^n \sqrt{1 - x^2} dx = \int_0^{\pi/2} \sin^n(t) \cos(t) \cos(t) dt = I_n - I_{n+2} = \left(1 - \frac{n+1}{n+2}\right) I_n = \frac{1}{n+2} I_n$$

Donc

$$L_n = \frac{1}{n+2} I_n = \begin{cases} \frac{(2p)!}{2^{2p} (p!)^2} \frac{\pi}{2(2p+2)} & \text{si} \quad n = 2p \\ \frac{2^{2p} (p!)^2}{(2p+1)!(2p+3)} & \text{si} \quad n = 2p+1 \end{cases}$$