Devoir à la maison n°1

La notation tiendra particuliérement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des formules utilisées.

Exercice 1

On note pour tout $n \in \mathbb{N}^*$, $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Calculer H_1 , H_2 , H_3 , H_4 et H_5 . On donnera le résultat sous forme de fraction irréductible
- 2. Montrer que pour tout entier $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} H_k = nH_n - n$$

On pourra sommer de deux façons différentes $\sum_{1\leqslant j < k \leqslant n} \frac{1}{k-j}$

Exercice 2

Donner une expression simplifiée et explicite ($forme\ ferm\'ee$), en fonction de n de :

$$\sum_{k=0}^{n} \binom{\binom{k}{2}}{2} \binom{2n-k}{n}$$

et de

$$\sum_{k=0}^{n} \binom{n}{k} \min(k, n-k)$$

Exercice 3

Soit $n \in \mathbb{N}$ et $z = \exp(i\pi/n)$.

- 1. Calculer $\sum_{k=0}^{n-1} z^k$.
- 2. Montrer que $\frac{2}{1-z} = 1 + i \frac{1}{\tan(\pi/2n)}$
- 3. En déduire que pour tout $n \in \mathbb{N}$, $n \ge 2$, $\sum_{k=0}^{n} \sin\left(\frac{k\pi}{n}\right) = \frac{1}{\tan(\pi/2n)}$

Exercice 4

- 1. Résoudre, dans $\mathbb{C} \times \mathbb{C}$ le système suivant : $\left\{ \begin{array}{ll} u+v&=-\frac{1}{2}\\ u\times v&=-\frac{1}{4} \end{array} \right..$
- 2. On pose $\omega = e^{2i\pi/5}$. Démontrer que $\omega^0 + \omega^1 + \omega^2 + \omega^3 + \omega^4 = 0$. En déduire à l'aide des formules d'Euler que $\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} = -\frac{1}{2}$.
- 3. Démontrer que $\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} + \sin \frac{2\pi}{5} \sin \frac{4\pi}{5} = \cos \frac{2\pi}{5}$ et $\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} \sin \frac{2\pi}{5} \sin \frac{4\pi}{5} = \cos \frac{4\pi}{5}$
- 4. En déduire que $\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} = -\frac{1}{4}$.
- 5. Démontrer que cos $\frac{2\pi}{5}=\frac{-1+\sqrt{5}}{4}$ et sin $\frac{2\pi}{5}=\frac{-1-\sqrt{5}}{4}$