Devoir à la maison n°10

La notation tiendra particulièrement compte de la qualité de la rédaction, la précision des raisonnements et l'énoncé des formules utilisées.

Exercice

L'objet de cet exercice est de généraliser la notion d'inverse d'une application linéaire. Soit E et F deux espaces vectoriels sur le corps \mathbb{R} , et $u \in \mathcal{L}(E, F)$.

- 1. Soit E' un supplémentaire dans E de Ker u et F' un supplémentaire dans F de Im u.
 - (a) Prouver que l'application induite $\tilde{u}: E' \to \text{Im } u, x \mapsto u(x)$ est un isomorphisme.
 - (b) Soit $y \in F$. Prouver qu'il existe un couple unique $(x', y') \in E' \times F'$ tel que y = u(x') + y'. L'élément x' est alors noté v(y).
 - (c) Prouver que l'on définit ainsi une application linéaire $v: F \to E$.
 - (d) Que dire de v lorsque u est un isomorphisme?
- 2. On revient à $u \in \mathcal{L}(E,F)$ quelconque, et on considère l'application $v \in \mathcal{L}(F,E)$ définie à la question précédente.
 - (a) Déterminer le noyau et l'image de v.
 - (b) Prouver que $u \circ v \circ u = u$ et que $v \circ u \circ v = v$.

On dit que le morphisme v est un pseudo-inverse de u.

- 3. Réciproquement, soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, E)$ tels que $u \circ v \circ u = u$ et $v \circ u \circ v = v$.
 - (a) Prouver que $u \circ v$ et $v \circ u$ sont des projecteurs dont on précisera le noyau et l'image (en fonction de ceux de u et v).
 - (b) En déduire que $E = \operatorname{Ker} u \oplus \operatorname{Im} v$ et $F = \operatorname{Im} u \oplus \operatorname{Ker} v$.
 - (c) On note $\overline{u}: \text{Im } v \to \text{Im } u \text{ et } \overline{v}: \text{Im } u \to \text{Im } v \text{ les applications induites par } u \text{ et } v$. Montrer que \overline{v} est l'isomorphisme réciproque de \overline{u} .

Problème

On pose
$$a_1 = \frac{1}{2}$$
, $a_2 = \frac{1 \times 3}{2 \times 4}$,... $a_n = \frac{1 \times 3 \times 5 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)}$.

Pour tout $n \in \mathbb{N}^*$, on cherche à calculer Δ_n , le déterminant de la matrice

$$D_{n} = \begin{pmatrix} a_{1} & 1 & 0 & \cdots & \cdots & 0 \\ a_{2} & a_{1} & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & 0 \\ a_{n-1} & a_{n-2} & \cdots & \cdots & a_{1} & 1 \\ a_{n} & a_{n-1} & \cdots & \cdots & a_{2} & a_{1} \end{pmatrix}$$

On pose $\Delta_0 = 1$.

A. Relation de récurrence

- 1. On fixe $n \ge 3$.
 - (a) Que peut-on dire du déterminant de la matrice extraite de la matrice D_n où l'on a effacé la dernière ligne et la première colonne?
 - (b) Même question avec le déterminant de la matrice extraite de la matrice D_n où l'on a effacé la dernière ligne et la dernière colonne.
 - (c) Soit $k \in [2, n-1]$. Dans quelle colonne de la matrice D_n a-t-on le coefficient a_k sur la dernière ligne?

Vérifier que la matrice extraite de D_n après suppression de la ligne n et de la colonne verifier que la maurice distant contenant a_k est de la forme $\begin{pmatrix} A & 0 \\ B & C \end{pmatrix}$ avec $A \in \mathcal{M}_{n-k}(\mathbb{R})$.

Expliciter les matrices A et C.

- 2. Montrer que pour tout $n \ge 3$, $\Delta_n = \sum_{k=1}^n (-1)^{k-1} a_k \Delta_{k-1}$.
- 3. Vérifier que la relation précédente est également vraie pour n=1 et n=2.

B. Détermination de Δ_n

Pour tout $k \in \mathbb{N}$, on note E_k un ensemble à k éléments.

1. Enoncer le théorème de Taylor-Young et vérifier que si f et g sont deux fonctions qui admettent un développement limité à l'ordre N en 0de la forme :

$$f(x) = \sum_{k=0}^{N} b_k x^k + o(x^N)$$
 $g(x) = \sum_{k=0}^{N} c_k x^k + o(x^N)$

. Alors pour $n \in [0, N]$, le coefficient de x^n dans le $DL_N(fg)(0)$ est $\sum_{k=0}^n b_k c_{n-k}$.

On considère pour toute la suite : $f: x \mapsto \frac{1}{\sqrt{1+x}}$ et $g: x \mapsto \sqrt{1+x}$.

- 2. Déterminer le plus grand intervalle I sur lequel f et g sont \mathcal{C}^{∞} et justifier que f et g admettent un développement limité à tout ordre en 0. On ne demande pas de la déterminer explicitement
- 3. Montrer que pour tout $k \in \mathbb{N}$, pour tout $x \in I$, $f^{(k)}(x) = \frac{(-1)^k k! a_k}{(1+x)^{k+1/2}}$
- 4. Simplifier f(x)g(x) sur l'intervalle I et en déduire que pour tout $n \in \mathbb{N}^*$, $c_n = \sum_{k=1}^n (-1)^{k+1} a_k c_{n-k}$.
- 5. Montrer que pour tout entier n, $\Delta_n = c_n$.
- 6. Pour $x \in I$, déterminer g'(x) et en déduire pour $n \in \mathbb{N}^*$, la valeur de $g^{(n)}(0)$ en fonction de g et d'un des termes de la suite $(a_k)_{k \in \mathbb{N}}$.
- 7. En déduire que pour $n \in \mathbb{N}^*$, $\Delta_n = (-1)^{n-1} \frac{a_{n-1}}{2n}$ et déterminer finalement une expression de Δ_n en fonction de n et de factorielles.