Devoir surveillé n°5

Durée de l'épreuve : 4 heures La calculatrice est interdite

Le devoir est composé d'un problème.

Lorsqu'une question est jugée, a priori, plus difficile, elle est précédée du symbole (*) voire (**). La notation tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des <u>formules utilisées</u>.

BON COURAGE

Problème - Polynômes de Legendre

On rappelle que $\mathbb{R}[X]$ désigne l'ensemble (\mathbb{R} -espace vectoriel) des polynômes à coefficients réels. Pour n entier naturel, $\mathbb{R}_n[X]$ désigne l'ensemble (sous-espace vectoriel de $\mathbb{R}[X]$) des polynômes de degré inférieur ou égal à n.

On précise que l'on pourra confondre polynôme et fonction polynomiale associée.

Soit P un polynôme de $\mathbb{R}[X]$. On note $P^{(n)}$ sa dérivée n-ième.

On considère l'application ϕ de $\mathbb{R}[X]$ dans lui-même définie par

$$\forall P \in \mathbb{R}[X], \phi(P) = (X^2 - 1)P'' + 2XP'$$

Et pour P et Q de $\mathbb{R}[X]$, on définit :

$$\langle P, Q \rangle = \int_{-1}^{1} P(t) Q(t) dt.$$

Enfin Pour $n \in \mathbb{N}$, on note $U_n = (X^2 - 1)^n$ et $L_n = \frac{1}{2^n n!} U_n^{(n)}$. Les polynômes L_n sont appelés polynômes de Legendre.

A. Quelques résultats généraux

1. Déterminer L_0 , L_1 et vérifier que $L_2 = \frac{1}{2} (3X^2 - 1)$.

Dans la suite de cette partie, n désigne un entier naturel.

- 2. Justifier que L_n est de degré n et préciser la valeur de $a_n = [L_n]_n$. Par la suite, pour tout entier naturel n, a_n désigne le coefficient dominant de L_n .
- 3. (a) Montrer que pour $P \in \mathbb{R}_n[X]$, il existe $b_0, \dots b_n \in \mathbb{R}$ tel que $P = \sum_{k=0}^n b_k L_k$.

On pourra faire une récurrence forte.

- (b) Montrer que la famille $(b_0, b_1, \dots b_n) \in \mathbb{R}^n$ ainsi associée à tout P est unique.
- 4. (a) Pour $n \in \mathbb{N}^*$, déterminer les racines de U_n , en précisant leur ordre de multiplicité, puis justifier qu'il existe un réel $\alpha \in]-1,1[$ et un réel λ , que l'on ne cherchera pas à déterminer, tels que :

$$U'_{n} = \lambda (X - 1)^{n-1} (X + 1)^{n-1} (X - \alpha)$$
.

On pourra utiliser le théorème de Rolle.

(b) Dans cette question seulement, $n \ge 2$. Soit $k \in [1, n-1]$. On suppose qu'il existe des réels $\alpha_1, \ldots, \alpha_k$ deux à deux distincts dans]-1,1[et un réel μ tels que :

$$U_n^{(k)} = \mu(X-1)^{n-k}(X+1)^{n-k}(X-\alpha_1)\cdots(X-\alpha_k)$$

Justifier qu'il existe des réels $\beta_1, \ldots, \beta_{k+1}$ deux à deux distincts dans]-1,1[et un réel ν tels que :

$$U_n^{(k+1)} = \nu(X-1)^{n-k-1}(X+1)^{n-k-1}(X-\beta_1)\cdots(X-\beta_{k+1})$$

(c) En déduire que, pour $n \in \mathbb{N}^*$, L_n admet n racines réelles simples, toutes dans [-1,1]. On les note x_1, \ldots, x_n , en convenant que $x_1 < \ldots < x_n$.

On note
$$A_n = \prod_{k=1}^n (X - x_k)$$
.

En convenant que $A_0 = 1$, on a donc : $\forall n \in \mathbb{N}$, $L_n = a_n A_n = a_n \prod_{k=1}^n (X - x_k)$.

B. Etude de l'application ϕ

Dans toute cette partie, n désigne un entier fixé quelconque.

- 1. Prouver que pour tout $P, Q \in \mathbb{R}[X]$ et $\lambda, \mu \in \mathbb{R}$, $\phi(\lambda P + \mu Q) = \lambda \phi(P) + \mu \phi(Q)$ On dit que ϕ est un endomorphisme de $\mathbb{R}[X]$.
- 2. Justifier que pour tout $P \in \mathbb{R}_n[X]$, $\phi(P) \in \mathbb{R}_n[X]$. On dit que $\mathbb{R}_n[X]$ est stable par ϕ .

On note ϕ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par ϕ .

Cet endomorphisme ϕ_n est donc défini par :

$$\forall P \in \mathbb{R}_n [X], \phi_n (P) = \phi (P)$$

3. Vérifier que :

$$\forall k \in [0, n], \quad (X^2 - 1) U_k' - 2kXU_k = 0$$

4. Soit $k \in [0, n]$. En dérivant (k + 1) fois la relation de la question précédente, montrer grâce à la formule de dérivation de Leibniz que :

$$(X^2 - 1) U_k^{(k+2)} + 2XU_k^{(k+1)} - k(k+1) U_k^{(k)} = 0$$

5. Montrer que, pour tout $n \in \mathbb{N}$, $\phi(L_n) = n(n+1)L_n$ On dit que le polynôme L_k est un vecteur propre de ϕ_n , en précisant la valeur propre associée.

C - Produit scalaire associé à (L_n)

- 1. Montrer que (.,.) vérifie les propriétés suivantes :
 - (i) $\forall P, Q \in \mathbb{R}[X], \langle P, Q \rangle = \langle Q, P \rangle$
 - (ii) $\forall P_1, P_2, Q \in \mathbb{R}[X], \forall \lambda_1, \lambda_2 \in \mathbb{R}, \langle \lambda_1 P_1 + \lambda_2 P_2, Q \rangle = \lambda_1 \langle P_1, Q \rangle + \lambda_2 \langle P_2, Q \rangle$
 - (iii) $\forall P \in \mathbb{R}[X], \langle P, P \rangle \geqslant 0$
 - (iv) (*) $\forall P \in \mathbb{R}[X], \langle P, P \rangle = 0 \Longrightarrow P = 0$

On dit que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.

On note alors $\|\cdot\|$ l'application définie par : $\|f\| = \left(\int_{-1}^{1} f(t)^{2} dt\right)^{\frac{1}{2}}$. On dit que $\|\cdot\|$ est la norme associée au produit scalaire $\langle\cdot,\cdot\rangle$

2. Etablir que : $\forall (P,Q) \in \mathbb{R}[X]^2$, $\langle \phi(P), Q \rangle = -\int_{-1}^{1} (t^2 - 1) P'(t) Q'(t) dt$, puis que :

$$\forall \ \left(P,Q\right) \in \mathbb{R}\left[X\right] ^{2}\,,\,\left\langle \phi \left(P\right) ,Q\right\rangle =\left\langle P,\phi \left(Q\right) \right\rangle$$

3. Montrer que la famille $(L_n)_{n\in\mathbb{N}}$ de polynômes de $\mathbb{R}[X]$ est orthogonale pour le produit scalaire, c'est-à-dire :

$$\forall i \neq j \in \mathbb{N}_n, \langle L_i, L_j \rangle = 0$$

On pourra utiliser la question **B.5.**.

- 4. En exploitant, A.3. montrer que : $\forall n \in \mathbb{N}^*, \forall P \in \mathbb{R}_{n-1}[X], \langle P, L_n \rangle = 0$.
- 5. Soit $n \in \mathbb{N}$. On note pour tout $k \leq 2n$, $u_k = \langle U_n^{(k)}, U_n^{(2n-k)} \rangle$
 - (a) Montrer que $((-1)^k(u_k))_{0 \le k \le 2n}$ est constant et donner sa valeur.
 - (b) En déduire que $||L_n|| = \sqrt{\frac{2}{2n+1}}$

D. Application à l'approximation d'intégrales

Dans les questions suivantes, n désigne un entier naturel non nul.

- 1. Soit h une application de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^{2n-1} sur \mathbb{R} telle qu'il existe 2n réels $t_1 < \ldots < t_{2n}$ vérifiant : $\forall i \in [1, 2n], \ h(t_i) = 0$.

 Montrer qu'il existe un réel $c \in [t_1, t_{2n}]$ tel que : $h^{(2n-1)}(c) = 0$.
- 2. On note

$$\Psi: \mathbb{R}_{n-1}[X] \longrightarrow \mathbb{R}$$

$$P \longmapsto \int_{-1}^{1} P(t) dt$$

et on rappelle que les x_1, \ldots, x_n désignent les racines de L_n et qu'elles sont deux à deux distinctes.

(a) Donner (sans démonstration) l'expression de la famille des polynômes, notés ici M_k vérifiant :

$$\forall k \in \mathbb{N}_n, \forall i \in \mathbb{N}_n, \quad M_k(x_i) = \delta_{i,k} = \begin{cases} 1 & \text{si } i = k \\ 0 & \text{si } i \neq k \end{cases} \quad \deg(M_k) \leqslant n - 1$$

(b) On note, pour tout $k \in \mathbb{N}_n$, $\alpha_k = \Psi(M_k)$. Montrer que

$$\forall P \in \mathbb{R}_{n-1}[X], \quad \Psi(P) = \sum_{k=1}^{n} \alpha_k P(x_k)$$
 (1)

3. Montrer que la relation (1) trouvée à la question précédente reste vérifiée pour tout $P \in \mathbb{R}_{2n-1}[X]$.

On pourra, pour $P \in \mathbb{R}_{2n-1}[X]$, utiliser la division euclidienne de P par L_n et la question C.4.

- 4. On note $N_k = M_k^2$, où M_k est défini en 2.(a).
 - (a) Quel est le degré de N_k ?
 - (b) Calculer $N_k(x_k)$. Montrer que pour $j \neq k$, $N_k(x_i) = N'_k(x_i) = 0$
 - (c) Donner l'expression formelle de N'_k , en déduire que $N'_k(x_k) = \sum_{j \neq k} \frac{2}{x_k x_j}$.

On note, pour tout $k \in \mathbb{N}_n$, $\alpha_k = N'_k(x_k)$

Dans la suite du problème, f désigne une application de [-1,1] dans $\mathbb R$ de classe $\mathcal C^{2n}$ sur [-1,1].

- 5. On considère $H_n(X) = \sum_{k=1}^n [f(x_k) + (X x_k)(f'(x_k) \alpha_k f(x_k))] \times N_k(X)$.
 - (a) Montrer que $H \in \mathbb{R}_{2n-1}[X]$.
 - (b) Montrer que $\forall i \in [1, n], \begin{cases} H_n(x_i) = f(x_i) \\ H'_n(x_i) = f'(x_i) \end{cases}$.

On rappelle que A_n a été défini à la fin de la partie A.

6. (*)Soit $x \in [-1, 1]$ tel que : $\forall i \in [1, n], x \neq x_i$.

Montrer que :
$$\exists c_x \in [-1, 1]$$
, $f(x) - H_n(x) = \frac{A_n(x)^2}{(2n)!} f^{(2n)}(c_x)$.

On pourra considérer l'application g définie sur [-1,1] par $g(t) = f(t) - H_n(t) - \frac{A_n(t)^2}{(2n)!}K$, où K est un réel dépendant de x à préciser, et appliquer le résultat de la question D.1. à la fonction g'.

- 7. Montrer que : $\forall y \in [-1,1]$, $\exists c_y \in [-1,1]$, $f(y) H_n(y) = \frac{A_n(y)^2}{(2n)!} f^{(2n)}(c_y)$.
- 8. Justifier l'existence de $M_{2n}\left(f\right) = \max_{t \in [-1,1]} \left|f^{(2n)}\left(t\right)\right|$, puis prouver que :

$$\left| \int_{-1}^{1} f(t) dt - \left(\alpha_{1} f(x_{1}) + \ldots + \alpha_{n} f(x_{n}) \right) \right| \leqslant \frac{M_{2n}(f)}{(2n)!} \int_{-1}^{1} A_{n}(t)^{2} dt$$

9. Déterminer un équivalent simple au voisinage de $+\infty$ de $\int_{-1}^1 A_n(t)^2 dt$.