Devoir à la maison n°8

La notation tiendra particulièrement compte de la qualité de la rédaction, la précision des raisonnements et l'énoncé des formules utilisées.

Exercice - Espace vectoriel de matrices

Exercice - Espace vectoriel de matrices

On note
$$\forall \ a, b \in \mathbb{R}, \ M(a, b)$$
 la matrice de $\mathcal{M}_3(\mathbb{R})$ définie par : $M(a, b) = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$.

On notera simplement : A = M(0,1) et I = M(1,0). Enfin, on note $\mathcal{F} = \{M(a,b) \mid a,b \in \mathbb{R}\}\$

- 1. (a) Montrer que \mathcal{F} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. On pourra montrer que $\mathcal{F} = \text{vect}(A, I)$.
 - (b) Montrer que \mathcal{F} est de dimension 2.
 - (c) Écrire la matrice des composantes de ((A+I), (A-2I)) dans la base (A, I) de \mathcal{F}
 - (d) Montrer que ((A+I), (A-2I)) est une base de \mathcal{F} .
 - (e) Calculer les coordonnées de M(a, b) dans cette base.
- 2. (a) Calculer le produit $(A + I) \times (A 2I)$.
 - (b) Calculer $(A+I)^2$. Montrer alors que $\forall n \in \mathbb{N}^*, (A+I)^{n+1} = 3 \times (A+I)^n$. Démontrer que $\forall n \in \mathbb{N}^*, (A+I)^n$ s'écrit simplement.
 - (c) Calculer $(A-2I)^2$. Montrer alors que $\forall n \in \mathbb{N}^*$, $(A-2I)^{n+1} = -3 \times (A-2I)^n$. Démontrer que $\forall n \in \mathbb{N}^*$, $(A-2I)^n$ s'écrit simplement.
 - (d) Écrire $\forall n \in \mathbb{N}^*, \forall a, b \in \mathbb{R}, [M(a,b)]^n$ dans cette base.
- 3. En déduire en particulier une forme simple de A^n (pour tout entier $n \in \mathbb{N}^*$)

Problème - Deux espaces de matrices

On note $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel réel des matrices carrées d'ordre trois, I la matrice identité de $\mathcal{M}_3(\mathbb{R})$, et 0 la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.

On considère, pour tout matrice A de $\mathcal{M}_3(\mathbb{R})$, les ensembles $E_1(A)$ et $E_2(A)$ suivants :

$$E_1(A) = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid A \times M = M \}$$

$$E_2(A) = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid A^2 \times M = AM \}$$

Partie I: Structure

- 1. Quelle est la dimension de l'espace vectoriel $\mathcal{M}_3(\mathbb{R})$?
- 2. Montrer que $E_1(A)$ est un sous espace vectoriel de $M_3(\mathbb{R})$. On admettra que $E_2(A)$ est également un sous espace vectoriel de $M_3(\mathbb{R})$
- 3. (a) Établir : $E_1(A) \subset E_2(A)$.
 - (b) Montrer que si A est inversible alors $E_1(A) = E_2(A)$.
- 4. (a) Établir que si A I est inversible alors $E_1(A) = \{0\}$
 - (b) Un exemple : $B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Déterminer $E_1(B)$ et $E_2(B)$.

Partie II: Étude d'un cas particulie

On considère les matrices
$$C = \begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 2 & -2 & 0 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

- 1. Montrer que P est inversible et calculer P^{-1} .
- 2. Montrer que la matrice $D = P^{-1}CP$ est une matrice diagonale.
- 3. Soit $M \in \mathcal{M}_3(\mathbb{R})$. On note $N = P^{-1}M$. Montrer l'équivalence suivante : $M \in E_1(C) \iff N \in E_1(D)$.

- 4. Montrer que $N \in E_1(D)$ si et seulement s'il existe trois réels a, b et c tels que $N = \begin{pmatrix} 0 & 0 & 0 \\ a & b & c \\ 0 & 0 & 0 \end{pmatrix}$.
- 5. En déduire l'expression générale des matrices de $E_1(C)$ et déterminer une base et la dimension de $E_1(C)$.
- 6. Donner l'expression générale des matrices de $E_2(C)$ et déterminer une base et la dimension de $E_2(C)$.

Est-ce que $E_1(C) = E_2(C)$?