Devoir surveillé n°5

Durée de l'épreuve : 4 heures La calculatrice est interdite

Le devoir est composé d'un exercice et d'un problème.

Lorsqu'une question est jugée, a priori, plus difficile, elle est précédée du symbole (*) voire (**). La notation tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des formules utilisées.

BON COURAGE

Exercice - Un air de « déjà-vu »

Soit f une fonction dérivable sur [a, b] telle que f'(a) < 0 et f'(b) > 0.

- 1. Montrer qu'il existe c tel que f'(c) = 0.
- 2. En déduire que si g est une fonction dérivable sur I alors g'(I) est un intervalle.
- 3. Donner l'exemple d'une fonction non continue qui vérifie le théorème des valeurs intermédiaires. (On montrera que cette fonction est bien non continue).

Problème - Caractères de Dirichlet

Notations:

- Pour deux nombres entiers relatifs a et b, on note $a \wedge b$ le PGCD de ces deux nombres.
- On note \mathcal{P} , l'ensemble des nombres premiers.
- Pour deux nombres entiers relatifs, on note a%b, le reste de la division euclidienne de a par b. Nécessairement : b|(a-a%b) et $0 \le a\%b < b$
- Pour tout $N \in \mathbb{N}^*$, on note \mathcal{P}_N , l'ensemble des nombres entiers de [1, N], premier avec N.

$$\mathcal{P}_N = \{ a \in [1, N] \mid a \land N = 1 \}$$

— Pour tout $N \in \mathbb{N}^*$, on note $\varphi(N)$, le nombre d'entiers de [1, N], premier avec N:

$$\varphi(N) = \operatorname{card} \mathcal{P}_N$$

- L'application $\varphi: \mathbb{N}^* \to \mathbb{N}, N \mapsto \varphi(N)$ est appelé <u>indicatrice d'Euler</u>.
- Pour tout entier $N \in \mathbb{N}$, on suppose qu'il existe une application χ_N de \mathbb{Z} dans \mathbb{R} qui satisfait :
 - **A.** $\chi_N(0) = 0$ et χ_N est non identiquement nul.
 - **B.** Pour tout a dans \mathbb{Z} , non premier avec N, $\chi_N(a) = 0$.
 - C. Pour tous entiers relatifs a et b, $\chi_N(ab) = \chi_N(a)\chi_N(b)$ On dit que χ_N est complétement multiplicative
 - **D.** χ_N est N-périodique : pour tout a dans \mathbb{Z} , $\chi_N(a+N)=\chi_N(a)$

S'il n'y a pas de doute sur le nombre N considéré, il est possible d'écrire χ au lieu de χ_N . Une telle application s'appelle un caractère de Dirichlet.

Objectif:

Dans ce problème, conformément à la demande de Rémy D., nous démontrons quelques étapes du théorème de Dirichlet (1840):

Pour tout nombre $a, n \in \mathbb{N}$ tel que $a \wedge n = 1$, il existe une infinité de nombres premiers de la forme a + kn $\forall a, n \in \mathbb{N}, \quad a \wedge n = 1 \iff \operatorname{card}\{p \in \mathcal{P} \mid p \equiv a[n]\} = +\infty$

La démonstration complète est trop longue. Nous nous contenterons de résultats intermédiaires :

— en partie A, on étudie la fonction φ (indicatrice d'Euler) et nous terminons par un théorème d'Euler qui généralise le petit théorème de Fermat.

- en partie B, on étudie la fonction arctan ce qui nous permet d'obtenir la valeur de la limite d'une certaine suite (série).
- en partie C, on étudie quelques caractères particuliers.
- en partie D, on montre la convergence d'une certaine suite, premiers pas vers le théorème de Dirichlet.

Les deux premières parties sont indépendantes. La partie C dépend de la partie B. La partie D dépend des parties A et C.

Dans la correction figurent des commentaires complémentaires...

A - Indicatrice d'Euler

- 1. Montrer que pour tout $N \in \mathbb{N}^*$, $\varphi(N) \geqslant 1$. Donner tous les entiers pour lesquels $\varphi(N) = 1$.
- 2. Si p est un nombre premier, que vaut $\varphi(p)$? Pour tout entier $n \in \mathbb{N}^*$, montrer que $\varphi(p^n) = p^{n-1}(p-1)$.
- 3. (a) Montrer que

$$\begin{array}{cccc} P: & \mathcal{P}_{N_1 N_2} & \longrightarrow & \mathcal{P}_{N_1} \times \mathcal{P}_{N_2} \\ & a & \longmapsto & (a\%N_1, a\%N_2) \end{array}$$

est bien définie (On vérifiera que l'ensemble d'arrivée annoncé est correct).

(b) (*) Montrer que, si N_1 et N_2 sont premiers entre eux, P est bijective de $\mathcal{P}_{N_1N_2}$ sur $\mathcal{P}_{N_1} \times \mathcal{P}_{N_2}$. En déduire que φ est une application multiplicative, c'est-à-dire vérifiant :

$$\forall N_1, N_2 \in \mathbb{N}, \quad N_1 \wedge N_2 = 1 \Longrightarrow \varphi(N_1 N_2) = \varphi(N_1) \varphi(N_2)$$

- 4. Soit $N \in \mathbb{N}^*$. Soit $a \in \mathcal{P}_N$.
 - (a) Montrer que pour tout $k \in \mathcal{P}_N$, $(ak)\%N \in \mathcal{P}_N$
 - (b) On définit alors:

$$\psi_a: \mathcal{P}_N \to \mathcal{P}_N, \ k \mapsto (ak)\%N$$

Montrer que ψ_a est bijective.

(c) En déduire le théorème d'Euler (généralisation du petit théorème de Fermat) :

$$\forall a \in \mathbb{N}, \quad a \wedge N = 1 \Longrightarrow a^{\varphi(N)} \equiv 1[N]$$

B - Etude de arctan

On étudie ici la fonction arctan, de classe \mathcal{C}^{∞} sur \mathbb{R} (résultat du cours). On note également ici :

$$A: \mathbb{R} \to \mathbb{C}, \ x \mapsto \frac{1}{1-ix}$$

- 1. Montrer que A est de classe \mathcal{C}^{∞} sur \mathbb{R} . Pour tout $k \in \mathbb{N}$, donner une expression de $A^{(k)}(x)$, pour tout $x \in \mathbb{R}$ (à démontrer).
- 2. Montrer que pour tout $x \in \mathbb{R}$, $\arctan'(x) = \operatorname{Re}(A(x))$. En déduire une expression de $\arctan^{(k+1)}(0)$, pour tout $k \in \mathbb{N}$.
- 3. (a) Montrer que pour tout $x \in]0,1]$, il existe $c_x \in]0,x[$ tel que

$$\arctan(x) = \sum_{k=0}^{N} \frac{\arctan^{(k)}(0)}{k!} x^{k} + \frac{\arctan^{N+1}(c_x)}{(N+1)!} x^{N+1}$$

On pourra considérer, x fixé, l'application $h_N: t \mapsto \arctan(x) - \sum_{k=0}^{N} \frac{\arctan^{(k)}(t)}{k!} (x-t)^k - R_N \frac{(x-t)^{N+1}}{(N+1)!}$ avec R_N choisit tel que $h_N(0) = 0$.

(b) En déduire qu'il existe $c_1 \in]0,1[$ tel que

$$\frac{\pi}{4} = \sum_{k=0}^{p} \frac{(-1)^k}{2k+1} + \frac{1}{2p+1} \operatorname{Re} \left(\frac{i^{2p}}{(1-ic_1)^{2p+1}} \right)$$

(c) Quelle est la limite de $\left(\sum_{k=0}^{n} \frac{(-1)^k}{2k+1}\right)_{n\in\mathbb{N}}$?

C. Caractères. Cas particuliers

- 1. Pour tout entier $N \in \mathbb{N}$, calculer $\chi_N(1)$.
- 2. Montrer que si $a \land N \neq 1$, alors $\{p \in \mathcal{P} \mid p \equiv a[N]\}$ contient au plus un élément. En déduire que $\{p \in \mathcal{P} \mid p \equiv a[N]\} = +\infty \Longrightarrow \chi_N(a) \neq 0$.
- 3. En supposant N=2, déterminer χ_2 .
- 4. On suppose dans cette question que N=4.
 - (a) Montrer que $\chi_4(3)$ ne peut prendre que les valeurs 1 ou -1.
 - (b) On suppose maintenant $\chi_4(3) = -1$. On note pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{\chi_4(k)}{k}$.

Montrer la convergence de la suite $(S_n)_{n\in\mathbb{N}}$ et calculer la valeur de sa limite, notée $\sum_{n=1}^{+\infty} \frac{\chi_4(n)}{n}$.

5. (a) Montrer que s'il existe $a \in \mathcal{P}_N$ tel que $\{(a^k)\%N, k \in [1, \varphi(N)]\} = \mathcal{P}_N$, alors

$$\chi_N^a: t \mapsto \left\{ \begin{array}{cc} 0 & \text{si } t \wedge N \neq 1 \\ \exp(2i\pi\frac{k_t}{\varphi(N)}) & \text{avec } t \equiv (a^{k_t})[N] \end{array} \right.$$

est un caractère de Dirichlet.

- (b) Montrer que χ_N^a vérifie également le critère suivant : **E.** Il existe un entier $r \in \mathbb{Z}$ tel que $\chi_N^a(r) \notin \{0,1\}$
- (c) Proposer un caractère de Dirichlet vérifiant également ${\bf E}$ pour N=6. Et un autre pour N=7.

D. Convergence de la série $\sum_{n\geqslant 1} \frac{\chi(n)}{n}$

Soit $N \in \mathbb{N}$, fixé. Pour la suite de cette partie, la fonction χ_N sera simplement notée χ .

On note pour toute cette partie : pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=1}^n \chi(k)$ et $T_n = \sum_{k=1}^n \frac{\chi(k)}{k}$

1. Soit $a \in \mathcal{P}_N$.

En exploitant le théorème d'Euler (A.4.c.), montrer que $|\chi(a)|=1$.

Plus précisément, montrer que $\chi(a)$ est une racine r-ième de l'unité. On donnera une expression de r, en fonction de N.

2. Établir l'identité:

$$\sum_{k=1}^{N-1} \chi(ak) = \sum_{k=1}^{N-1} \chi(k)$$

On suppose dorénavant qu'il existe $a \in \mathcal{P}_N$ vérifiant $\chi(a) \neq 1$ (critère **E**).

3. Pour tout entier h, calculer $\sum_{k=hN}^{(h+1)N-1} \chi(k).$

On pourra commencer par le cas h = 0 puis exploiter la N-périodicité de χ .

4. Montrer, pour tout m > 0, l'inégalité :

$$\left| \sum_{k=1}^{m} \chi(k) \right| \leqslant \varphi(N)$$

5. (a) On rappelle qu'on dit qu'une suite (u_n) vérifie le critère de Cauchy si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall q > p \geqslant n, |u_q - u_p| < \epsilon$$

Sans démonstration, rappeler la relation entre « (u_n) converge » et « (u_n) vérifie le critère de Cauchy » (on supposera que la suite (u_n) est à valeurs réelles).

- (b) Démontrer que le résultat énoncé précédemment reste vraie pour (u_n) à valeurs complexes.
- (c) Soit $n \in \mathbb{N}^*$. Démontrer que pour tout $q > p \ge n$,

$$\sum_{k=p}^{q} \frac{\chi(k)}{k} = \sum_{k=p}^{q-1} S_k \left(\frac{1}{k} - \frac{1}{k+1} \right) + \frac{S_q}{q} - \frac{S_{p-1}}{p}$$

- (d) En déduire que (T_n) vérifie le critère de Cauchy.
- (e) Conclure quant à la convergence de la suite $\left(\sum_{k=1}^n \frac{\chi(k)}{k}\right)_{n\geqslant 1}$.