Devoir à la maison $n^{\circ}9$ CORRECTION

Exercice

1. (a) Par définition, pour tout $y \in \text{Im } u$, il existe $x \in E$ tel que y = u(x).

Puis pour ce x, il existe un couple $(x_1, x_2) \in E' \times \text{Ker } u$ tel que $x = x_1 + x_2$.

On a alors $y = u(x) = u(x_1) + u(x_2) = u(x_1) + 0$.

Ainsi, \tilde{u} est surjective de E' sur Im u.

Par ailleurs, si xKer \tilde{u} , alors $\tilde{u}(x) = u(x) = 0$, donc $x \in E' \cap \text{Ker } u = \{0\}$.

Donc x = 0 et \tilde{u} est injective.

Enfin, comme u, \tilde{u} est linéaire.

Donc, $\tilde{u}: E' \to \text{Im } u, x \mapsto u(x)$ est un isomorphisme.

(b) Soit $y \in F$.

Par supplémentarité : il existe un unique couple $(y_1, y') \in \text{Im } u \times F'$ tel que $y = y_1 + y'$.

Ensuite, par surjectivité de \tilde{u} , il existe $x' \in E'$ tel que $y_1 = \tilde{u}(x') = u(x')$.

Donc, on a prouvé l'existence du couple $(x', y') \in E' \times F'$ recherché.

Si y = u(a') + b' = u(x') + y'. Alors $b' - y' = u(x' - a) \in \text{Im } u \cap F' = \{0\}$.

Donc b' = y', puis $x' - a' \in \text{Ker } u \cap E' = \{0\}.$

Et ainsi, x' = a'.

Pour tout $y \in F$, il existe un couple unique $(x', y') \in E' \times F'$ tel que y = u(x') + y'.

(c) L'application est bien définie de F à E. Montrons qu'elle est linéaire.

Soient $\lambda_1, \lambda_2 \in \mathbb{R}$ et $y_1, y_2 \in F$.

Par décomposition : $y_1 = u(v(y_1)) + y_1'$ et $y_2 = u(v(y_2)) + y_2'$, avec $y_1', y_2' \in F'$.

$$\lambda y_1 + \lambda_2 y_2 = \lambda u(v(y_1)) + \lambda_1 y_1' + \lambda_2 u(v(y_2)) + \lambda_2 y_2'$$

$$= \lambda u(v(y_1)) + \lambda_1 y_1' + \lambda_2 u(v(y_2)) + \lambda_2 y_2'$$

$$= u(\lambda v(y_1) + \lambda_2 v(y_2)) + \underbrace{\lambda_1 y_1' + \lambda_2 y_2'}_{\in F'}$$

par linéarité de u. Et donc par unicité de la décomposition : $v(\lambda y_1 + \lambda_2 y_2) = \lambda v(y_1) + \lambda_2 v(y_2)$.

v est une application linéaire de F sur E.

(d) Si u est un isomorphisme, Im u = F et donc $F' = \{0\}$.

Et donc la décomposition devient : y = u(v(y)) + 0, donc $u \circ v = id$.

Puis comme u est un isomorphisme, il n'admet qu'un inverse à droite : u^{-1}

$$v = u^{-1}$$

2. (a) Soit $y \in \text{Ker } v$.

On sait qu'il existe un unique $y' \in F'$ tel que y = u(v(y)) + y'.

Et comme v(y) = 0, alors u(v(y)) = u(0) = 0 et donc y = y'. Ainsi $y \in F'$.

Réciproquement, si $y \in F'$, alors la décomposition de type 1.(b) devient :

Il existe un unique couple $(x', y') \in E' \times F'$ tel que y = u(x') + y'.

Or y = u(0) + y vérifie cette décomposition, donc v(y) = x' = 0 et y' = y Ainsi $y \in \text{Ker } v$.

$$\ker v = F'$$

Par définition de v, Im $v \subset E'$.

Réciproquement, considérons $x' \in E'$, puis y = u(x') + 0, et donc v(y) = x'. Donc $x' \in \text{Im } v$.

$$\operatorname{Im} v = E'$$

(b) Soit $a \in E$, alors a = b + c, avec $b \in \text{Ker } u \text{ et } c \in E'$.

Puis
$$u(a) = u(b) + u(c) = 0 + u(c) = u(c)$$
.

A la question précédente, on a vu que pour tout $x' \in E'$, v(u(x')) = x'.

$$(u \circ v \circ u)(a) = u(v(u(a))) = u(v(u(c))) = u(c) = u(a)$$

$$\forall a \in E, (u \circ v \circ u)(a) = u(a) \text{ donc } u \circ v \circ u = u$$

De même, considérons $b \in F$, alors il existe $b' \in F' = \text{Ker } v$ tel que b = u(v(b)) + b'. On sait que v(b') = 0. Par linéarité,

$$v(b) = v(u(v(b)) + v(b') = (v \circ u \circ v)(b)$$

$$\forall b \in F, v(b) = (v \circ u \circ v)(b) \text{ donc } v \circ u \circ v = v$$

- 3. Réciproquement, soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, E)$ tels que $u \circ v \circ u = u$ et $v \circ u \circ v = v$.
 - (a) On calcule le carré:

$$(u \circ v)^2 = u \circ \underbrace{v \circ u \circ v}_{=v} = u \circ v$$
 $(v \circ u)^2 = v \circ \underbrace{u \circ v \circ u}_{=u} = v \circ u$

$u \circ v$ et $v \circ u$ sont des projecteurs.

Soit $y \in \text{Ker } (u \circ v)$, alors u(v(y)) = 0, donc v(y) = v(u(v(y))) = v(0) = 0. Donc $y \in \text{Ker } v$. Réciproquement : si $y \in \text{Ker } v$, u(v(y)) = u(0) = 0, donc $y \in \text{Ker } (u \circ v)$ Soit $x \in \text{Im } (u \circ v)$, alors il existe $a \in F$ tel que x = u(v(a)), donc $x \in \text{Im } u$.

Réciproquement : si $x \in \text{Im } u$, il existe $a \in E$ tel que x = u(a), puis $x = (u \circ v \circ u)(a) = (u \circ v)(u(a))$. Donc $x \in \text{Im } u \circ v$.

$$\label{eq:Ker} \boxed{ \text{Ker } (u \circ v) = \text{Ker } v = F' \qquad \quad \text{Im } (u \circ v) = \text{Im } u }$$

Soit $x \in \text{Ker } (v \circ u)$, alors v(u(x)) = 0, donc u(x) = u(v(u(x))) = u(0) = 0. Donc $x \in \text{Ker } u$. Réciproquement : si $x \in \text{Ker } u$, v(u(x)) = v(0) = 0, donc $x \in \text{Ker } (v \circ u)$ Soit $y \in \text{Im } (v \circ u)$, alors il existe $x \in E$ tel que y = v(u(x)), donc $y \in \text{Im } v$.

Réciproquement : si $y \in \text{Im } v$, il existe $x \in E$ tel que y = v(x), puis $y = (v \circ u \circ v)(x) = (v \circ u)(v(x))$. Donc $y \in \text{Im } v \circ u$.

$$\boxed{\text{Ker } (v \circ u) = \text{Ker } u \qquad \text{Im } (v \circ u) = \text{Im } v = E'}$$

(b) Puisqu'il s'agit de projecteurs ; pour chacun, l'image et le noyau sont supplémentaires dans E et F respectivement :

$$E = \operatorname{Ker} (v \circ u) \oplus \operatorname{Im} (v \circ u) = \operatorname{Ker} u \oplus \operatorname{Im} v \text{ et } F = \operatorname{Im} (u \circ v) \oplus \operatorname{Ker} (u \circ v) = \operatorname{Im} u \oplus \operatorname{Ker} v.$$

(c) Pour tout $x \in \text{Im } v$, il existe $a \in F$ tel que x = v(a):

$$\overline{v} \circ \overline{u}(x) = v(u(v(a))) = v(a) = x \Longrightarrow \overline{v} \circ \overline{u} = \mathrm{Id}_{\mathrm{Im}\ v}$$

Pour tout $y \in \text{Im } u$, il existe $x \in E$ tel que y = u(x).

$$\overline{u} \circ \overline{v}(y) = u(v(u(x))) = u(x) = y \Longrightarrow \overline{u} \circ \overline{v} = \operatorname{Id}_{\operatorname{Im}\, u}$$
 \overline{v} est l'isomorphisme réciproque de \overline{u} .

Problème

A. Relation de récurrence

- 1. On fixe $n \geqslant 3$.
 - (a) On note $A^{I \wedge J}$, la matrice obtenue en enlevant à la matrice A, toutes les lignes $i \in I$ et toutes les colonnes $j \in J$.

 $D_n^{\{n\} \land \{1\}}$ est une matrice triangulaire inférieure avec que des 1 sur la diagonale,

son déterminant vaut 1

(b) On a

$$D_n^{\{n\} \land \{n\}} = \begin{pmatrix} a_1 & 1 & 0 & \cdots & 0 \\ a_2 & a_1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ a_{n-1} & a_{n-2} & \cdots & \cdots & a_1 \end{pmatrix} = D_{n-1}$$

$$\boxed{\det(D_n^{\{n\} \land \{n\}}) = \Delta_{n-1}}$$

Pour la dernière ligne, le coefficient a_k se trouve en colonne n-k+1

On supprime alors la colonne n - k + 1,

$$\begin{pmatrix} a_1 & 1 & 0 & \cdots & \cdots & & & & & \\ a_2 & a_1 & \ddots & \ddots & & & & & & \vdots \\ \vdots & \ddots & \ddots & 1 & 0 & & & & \vdots \\ a_{n-k} & & \ddots & a_1 & 1 & 0 & & & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots & \ddots & \ddots & \ddots \\ a_{n-k+1} & & & \ddots & a_1 & 1 & 0 & & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & & & & & \ddots & \ddots & \ddots & \ddots & \ddots \\ a_{n-k+1} & & & \ddots & a_1 & 0 & 0 & & \vdots \\ \vdots & & & & & \ddots & a_1 & 0 & 0 & & \vdots \\ a_{n-k+1} & & & \ddots & 1 & 0 & 0 & & \vdots \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & a_1 & \ddots & \ddots & 0 \\ \vdots & & & & & a_1 & \ddots & \ddots & 0 \\ \vdots & & & & & a_1 & \ddots & \ddots & 0 \\ \vdots & & & & & a_1 & \ddots & \ddots & 0 \\ \vdots & & & & & a_1 & \ddots & \ddots & 0 \\ a_{n-1} & \cdots & a_k & a_{k-1} & \cdots & a_1 & 1 \end{pmatrix}$$

$$\det(D_n^{\{n\} \land \{n-k+1\}}) = \begin{pmatrix} A_k & 0 \\ B_k & C_k \end{pmatrix} \text{ où } A_k = D_{n-k} \text{ et } C_k = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ a_1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{k-1} & \cdots & a_1 & 1 \end{pmatrix}$$

2. On applique le développement par rapport à la dernière ligne $(a_k$ est en colonne j = n - k + 1):

$$\Delta_{n} = \sum_{j=1}^{n} (-1)^{n+j} {}^{n} [D_{n}]_{j} \det(D_{n}^{\{n\} \land \{j\}})$$

$$= (-1)^{n+1} a_{n} \det D_{n}^{\{n\} \land \{1\}} + \sum_{k=2}^{n-1} (-1)^{2n+1-k} a_{k} \det \begin{pmatrix} A_{k} & 0 \\ B_{k} & C_{k} \end{pmatrix} + (-1)^{2n} a_{1} \det D_{n}^{\{n\} \land \{n\}}$$

$$= (-1)^{n+1} a_{n} \times 1 + \sum_{k=2}^{n-1} (-1)^{k-1} a_{k} \det A_{k} \det C_{k} + a_{1} \Delta_{n-1}$$

$$= (-1)^{n-1} a_{n} \Delta_{0} + \sum_{k=2}^{n-1} (-1)^{k-1} a_{k} \Delta_{n-k} + a_{1} \Delta_{n-1} = \sum_{k=1}^{n} (-1)^{k-1} a_{k} \Delta_{n-k}$$

car det $A_k = \Delta_{n-k}$, det $C_k = 1$ et $1 = \Delta_0$.

pour tout
$$n \geqslant 3$$
, $\Delta_n = \sum_{h=1}^n (-1)^{h-1} a_h \Delta_{n-h}$.

3.
$$\Delta_1 = a_1 = a_1 \times 1 = a_1 \times \Delta_0$$
.
 $\Delta_2 = \begin{vmatrix} a_1 & 1 \\ a_2 & a_1 \end{vmatrix} = a_1^2 - a_2 = a_1 \Delta_1 - a_2 \Delta_0$

Donc la relation précédente est également vraie pour n = 1 et n = 2.

- B. Détermination de Δ_n
- 1. Si f est de classe C^n sur I contenant a, alors f admet un $DL_n(a)$. Ensuite, il s'agit d'une multiplication polynomiale : Au voisinage de 0:

$$f(x) \times g(x) = \left(\sum_{k=0}^{N} b_k x^k + o(x^N)\right) \left(\sum_{k=0}^{N} c_k x^k + o(x^N)\right)$$
$$= P(x) \times Q(x) + o(x^N) = \sum_{k=0}^{N} \left(\sum_{p+q=k} b_p c_q\right) x^k + o(x^N)$$

Puis, par unicité du développement limité :

Le
$$DL_N(fg)(0)$$
 est $\sum_{k=0}^{N} d_k x^k + o(x^N)$ où $d_k = \sum_{i=0}^{n} b_i c_{k-i}$.

2. Par composition, il faut et il suffit que 1 + x > 0.

Donc le plus grand intervalle I sur lequel f et g sont C^{∞} est $I =]-1, +\infty[$

On peut alors appliquer le théorème de Taylor-Young :

f et g admettent un développement limité à tout ordre en 0 car $0 \in I$.

3. On note \mathcal{P}_k : « pour tout $x \in I$, $f^{(k)}(x) = \frac{(-1)^k k! a_k}{(1+x)^{k+1/2}}$ ».

— Pour tout
$$x \in I$$
, $f^{(0)}(x) = f(x) = \frac{1}{\sqrt{1+x}} = \frac{(-1)^0 0! a_0}{(1+x)^{0+1/2}}$

Donc \mathcal{P}_0 est vraie.

— Soit $k \in \mathbb{N}$. Supposons que \mathcal{P}_k est vraie. $f^{(k)}$ est dérivable sur I et pour tout $x \in I$:

$$f^{(k+1)}(x) = (-1)^k k! a_k \times \frac{-(k+\frac{1}{2})}{(1+x)^{k+1/2+1}} = \frac{(-1)^{k+1} \frac{(2k+1)k! a_k}{2}}{(1+x)^{k+1+1/2}}$$

Or
$$a_k = \frac{1 \times 3 \times 5 \times \cdots \times (2k-1)}{2 \times 4 \times \cdots (2k)}$$
, donc

$$\frac{(2k+1)k!a_k}{2} = (k+1)!\frac{1\times 3\times 5\times \cdots \times (2k-1)(2k+1)}{2\times 4\times \cdots (2k)(2(k+1))} = (k+1)!a_{k+1}$$

Donc \mathcal{P}_{k+1} est vraie.

Pour tout
$$k \in \mathbb{N}$$
, pour tout $x \in I$, $f^{(k)}(x) = \frac{(-1)^k k! a_k}{(1+x)^{k+1/2}}$.

4. Pour tout $x \in I$, $f(x) \times g(x) = 1$, donc pour tout $k \in \mathbb{N}^*$, $d_k = 0$ et $d_0 = 1$. Notons que, d'après la formule de Taylor,

$$b_k = \frac{f^{(k)}(0)}{k!} = (-1)^k a_k$$

On a donc, pour tout $n \in \mathbb{N}^*$

$$d_n = 0 = \sum_{k=0}^n b_k c_{n-k} = b_0 c_n + \sum_{k=1}^n b_k c_{n-k} \Longrightarrow c_n = \sum_{k=1}^n (-b_k) c_{n-k} = \sum_{k=1}^n (-1)^{k+1} a_k c_{n-k}$$

 $car b_0 = f(0) = 1$

Pour tout
$$n \in \mathbb{N}^*$$
, $c_n = \sum_{k=1}^n (-1)^{k+1} a_k c_{n-k}$.

5. Par récurrence forte, on a alors $\Delta_n = c_n$, car ces deux suites vérifient la même relation de récurrence et ont la même valent en 0.

Pour tout entier
$$n$$
, $\Delta_n = c_n$.

6. Remarquons que pour tout $x \in I$, $g'(x) = \frac{1}{2}f(x)$.

Ainsi, par linéarité de la dérivation, $g^{(k+1)} = \frac{1}{2}f^{(k)}$.

$$c_k = \frac{g^{(k)}(0)}{k!} = \frac{1}{2k} \frac{f^{(k-1)}(0)}{(k-1)!} = \frac{(-1)^{k-1}}{2k} a_{k-1}$$

7. Ainsi, comme $a_n = \frac{(2n)!}{(2^n n!)^2}$,

Pour
$$n \in \mathbb{N}^*$$
, $\Delta_n = c_n = (-1)^{n-1} \frac{a_{n-1}}{2n} = (-1)^{n-1} \frac{(2n-2)!}{(2^n n!)}$