Devoir surveillé n°9

Durée de l'épreuve : 4 heures La calculatrice est interdite

Le devoir est composé d'un problème.

Lorsqu'une question est jugée, a priori, plus difficile, elle est précédée du symbole (*) voire (**).

La notation tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des formules utilisées.

BON COURAGE

Problème

Objectifs

Le but du problème est de réfléchir de manières variées sur ce que pourrait être des intégrales entières. Nous abordons deux stratégies différentes (et complémentaires) : la méthode de Stieltjes (préliminaires, partie I et partie II) et la méthode des distributions (parties III et IV). Ces deux familles de parties sont relativement indépendantes.

Notations

Conformément aux devoirs précédent, on note -si la limite existe- :

$$\forall \ g \in \mathcal{F}(\mathbb{R}, \mathbb{R}), \qquad \int_{\mathbb{R}} g(x) \mathrm{d}x := \lim_{x \to +\infty} \int_{-x}^{x} g(t) \mathrm{d}t \qquad \text{et} \qquad \int_{a}^{+\infty} g(t) \mathrm{d}t := \lim_{x \to +\infty} \int_{a}^{x} g(t) \mathrm{d}t$$

Préliminaire. Calcul de la limite d'une série

Dans cette partie, nous commençons par un peu de calcul.

On note pour tout
$$n \in \mathbb{N}$$
, $u_n = \frac{1}{n}$, $v_n = \frac{(-1)^n}{n}$, $H_n = \sum_{k=1}^n u_k$ et $K_n = \sum_{k=1}^n v_k$.

Nous rappelons (et le redémontrerons en partie I) que la suite de somme partielle $(H_n)_{n\in\mathbb{N}^*}$ est une suite divergente et que $H_n = \lim_{n\to\infty} \ln n + \gamma + o(1)$ où γ est une constante appelé constante d'EULER.

- 1. Montrer rapidement (mais complétement) que la série de terme général v_n est convergente.
- 2. On note, pour tout $n \in \mathbb{N}^*$, $P_{2n} = \sum_{k=1}^n \frac{1}{2k}$ et $I_{2n} = \sum_{k=1}^n \frac{1}{2k+1}$.
 - (a) En utilisant l'équivalent de H_n , donner un développement asymptotique à l'ordre 0 (en à o(1)) de P_{2n} (pour $n \to +\infty$).
 - (b) Exprimer I_{2n} en fonction de P_{2n} et H_{2n} . En déduire un développement asymptotique à l'ordre 0 de I_{2n} (pour $n \to \infty$).
 - (c) Donner une relation entre K_{2n} et P_{2n} et I_{2n} ?
 - (d) En déduire la limite de (K_n)

I. Polynômes de Bernoulli et développement asymptotique de la série harmonique

- 1. Structure algébrique.
 - (a) On note $\Psi : \mathbb{R}[X] \to \mathbb{R}, P \mapsto \int_0^1 P(t) dt$. Montrer que Ψ est une forme linéaire.

Pour tout $n \in \mathbb{N}$, on note $\Psi_n = \Psi_{\mathbb{R}_n[X]}$. On admet que Ψ_n est également une forme linéaire.

- (b) On note, pour $n \in \mathbb{N}^*$, $\Phi_n : \mathbb{R}_n[X] \to \mathbb{R}_{n-1}[X]$, $P \mapsto \frac{1}{n}P'$. On admet que Φ_n est linéaire. Calculer Ker Φ_n . En exploitant les dimensions, montrer que Φ_n est surjective.
- (c) Déduire des deux questions précédentes que :

$$\mathcal{B}_n : \text{Ker } \Psi_n \to \mathbb{R}_{n-1}[X], \quad P \mapsto \Phi_n(P)$$

est une application bijective.

- 2. En déduire qu'il existe une unique suite (B_n) de polynômes vérifiant :
 - (a) $B_0 = 1$
 - (b) $\forall n \in \mathbb{N}^*, B'_n = nB_{n-1}$

(c)
$$\forall n \in \mathbb{N}^*, \int_0^1 B_n(x) dx = 0$$

Ces polynômes sont appelés Polynômes de Bernoulli et les nombres de $b_n = B_n(0)$ sont appelés nombres de Bernoulli.

- 3. Calculer B_1 , B_2 , B_3 et B_4 . Montrer que $b_3 = 0$ et $b_4 = -\frac{1}{30}$.
- 4. On admet la formule d'EULER-MACLAURIN démontrée dans la partie suivante :

Pour
$$f$$
 de classe \mathcal{C}^{k+1} sur $[a,b]$ (avec $a,b\in\mathbb{N}$):
$$\sum_{h=a+1}^b f(h) = \int_a^b f(t) \mathrm{d}t + \sum_{r=0}^k \left[\frac{(-1)^{r+1}b_{r+1}}{(r+1)!} \left(f^{(r)}(b) - f^{(r)}(a) \right) \right] + \frac{(-1)^k}{(k+1)!} \int_a^b \overline{B_{k+1}}(t) f^{(k+1)}(t) \mathrm{d}t$$
 où $\overline{B_k}: t\mapsto B_k(t-\lfloor t \rfloor)$ (i.e: $\overline{B_k}$ est 1-périodique et égale à B_k sur $[0,1]$).

Appliquer la formule pour montrer que pour tout $n\to\infty$:

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + O\left(\frac{1}{n^3}\right)$$

On admettra que $\int_{1}^{+\infty} t^{-4}\overline{B_3}(t)dt$ existe et vaut une certaine valeur $A \in \mathbb{R}_{+}...$

II. Intégrale de Stieltjes et formule d'Euler-Maclaurin

On considère [a, b], un intervalle de \mathbb{R} .

On définit, pour toute fonction A définie sur [a,b] et $\sigma = (([x_0,x_1],t_1),([x_1,x_2],t_2),\ldots,([x_{n-1},x_n],t_n))$, subdivision pointée de [a,b], et pour tout $f \in \mathcal{F}([a,b],\mathbb{R})$ la A-somme de STIELTJES:

$$S_A(f, \sigma) = \sum_{k=1}^{n} f(t_k) \times (A(x_k) - A(x_{k-1}))$$

Puis, on dit que

• f est A-R-intégrable sur [a, b] si il existe $I \in \mathbb{R}$ tel que :

 $\forall \ \epsilon > 0, \exists \ \delta \in \mathbb{R}_+ \ (\text{constant}), \forall \ \sigma, \ \text{subdivision point\'ee de } [a,b] \ \delta\text{-fine} \ , \qquad |S_A(f,\sigma) - I| \leqslant \epsilon$

• f est A-KH-intégrable sur [a, b] si il existe $I \in \mathbb{R}$ tel que :

$$\forall \ \epsilon > 0, \exists \ \delta : [a, b] \to \mathbb{R}_+, \forall \ \sigma, \text{ subdivision pointée de } [a, b] \ \delta \text{-fine }, \quad |S_A(f, \sigma) - I| \leqslant \epsilon$$

On note alors ce nombre $I:=\int_{[a,b]}f\mathrm{d}A$ (on admet qu'il est alors unique - s'il existe-)

- 1. Montrer que l'intégrale de Kurzweil-Henstock de f est un cas particulier de la KH-intégrale de Stieltjes de f.
- 2. On suppose que A est de classe C^2 . On démontre des résultat de type IPP dans un cadre <u>très</u> régulier. Ils seront généralisés en 4. On rappelle le théorème de Taylor-Lagrange :

Si
$$h$$
 est de classe C^p sur $[a, b]$, alors pour tout $x, t \in [a, b]$:
 $\exists c \in]x, t[\text{ (ou }]t, x[) \text{ tel que } h(x) = h(t) + (x - t)h'(t) + \dots + \frac{(x - t)^{p-1}}{(p-1)!}h^{(p-1)}(t) + \frac{(x - t)^p}{p!}h^{(p)}(c)$

(a) Montrer que f est A-KH-intégrable sur [a,b], si et seulement si $f \times A'$ est KH-intégrable sur [a,b].

Puis montrer que
$$\int_{[a,b]} f dA = \int_a^b f(t)A'(t)dt$$

(b) On suppose toujours que A est de classe C^2 et également que f est de classe C^1 sur [a,b], montrer alors que

$$\int_{[a,b]} f dA = f(b)A(b) - f(a)A(a) - \int_a^b f'(t)A(t)dt$$

3. On considère $A: \mathbb{R}_+ \to \mathbb{R}$, $x \mapsto \sum_{n=1}^{\lfloor x \rfloor} 1$ (pour $\lfloor x \rfloor = 0$, on admet que A(x) = 0).

On fixe pour les questions suivantes de 3., $X \in \mathbb{R}_+^*$, $N = \lfloor X \rfloor$ et $f \in \mathcal{F}(\mathbb{R}_+, \mathbb{R})$.

- (a) Quelle relation entre A et $PE: x \mapsto \lfloor x \rfloor$ (PE = Partie Entière)?
- (b) On note, alors

$$\delta_{X}: [0, X] \longrightarrow \mathbb{R}_{+}$$

$$t \longmapsto \begin{cases} \frac{1}{3} & \text{si } t \in \mathbb{N} \\ \frac{1}{3}(t - \lfloor t \rfloor) & \text{si } t \in \left[\lfloor t \rfloor, \lfloor t \rfloor + \frac{1}{2} \right] \\ \frac{1}{3}(\lfloor t \rfloor + 1 - t) & \text{si } t \in \left[\lfloor t \rfloor + \frac{1}{2}, \lfloor t \rfloor + 1 \right] \end{cases}$$

Montrer que δ_X est une jauge sur [0,X] et que pour tout subdivision pointée σ , δ_X -fine, l'ensemble $[0,X] \cap \mathbb{N}$ est inclus dans l'ensemble des points de marquage de σ .

(c) En déduire, pour tout subdivision pointée de [0, X] δ_X -fine, notée σ ,

$$S_A(f,\sigma) = \sum_{k=1}^{N} f(k)$$

(d) Montrer enfin que f est A-KH-intégrable sur [0, X] et

$$\int_{[0,X]} f \mathrm{d}A = \sum_{k=1}^{N} f(k)$$

- 4. Intégration par parties pour la R-intégrale de STIELTJES.
 - (a) On considère $\sigma = (([x_0, x_1], t_1) \dots ([x_{n-1}, x_n], t_n))$ une subdivision pointée de [a, b]. On lui associe $\overline{\sigma} = (([t_0, t_1], x_0) \dots ([t_{n-1}, t_n], x_{n-1}), ([t_n, t_{n+1}], x_n))$ avec $t_0 = a$ et $t_{n+1} = b$. Montrer que $\overline{\sigma}$ est également une subdivision pointée de [a, b].
 - (b) Simplifier le calcul $S_f(g, \sigma) + S_g(f, \overline{\sigma})$.
 - (c) En déduire que si f est g-R-intégrable sur [a,b], alors g est f-R-intégrable sur [a,b], et $\int_{[a,b]} g \mathrm{d}f + \int_{[a,b]} f \mathrm{d}g = f(b)g(b) f(a)g(a)$.
 - (d) En reprenant les notations de la question 3, montrer que si f est de classe \mathcal{C}^1 sur \mathbb{R} , alors pour tout X>1:

$$\sum_{k=1}^{\lfloor X \rfloor} f(k) = A(X)f(X) - \int_0^X A(t)f'(t)dt$$

5. (*) Montrer la formule d'Euler-Maclaurin pour f de classe \mathcal{C}^{k+1} sur [a,b] (avec $a,b\in\mathbb{N}$):

$$\sum_{h=a+1}^{b} f(h) = \int_{a}^{b} f(t) dt + \sum_{r=0}^{k} \left[\frac{(-1)^{r+1} b_{r+1}}{(r+1)!} \left(f^{(r)}(b) - f^{(r)}(a) \right) \right] + \frac{(-1)^{k}}{(k+1)!} \int_{a}^{b} \overline{B_{k+1}(t)} f^{(k+1)}(t) dt$$

Les nombres b_r et les fonctions polynomiales $\overline{B_k}$ sont définis en fin de partie I.

III. Etude d'une suite de fonctions

On note $\mathcal{F}(\mathbb{R}, \mathbb{R})$, l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

On dit qu'une fonction f de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ est à <u>support compact</u> s'il existe deux réels a et b vérifiant a < b et $\forall x \notin [a, b], f(x) = 0$.

On note \mathcal{D} , l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} , de classe \mathcal{C}^{∞} et à support compact.

Dans la première partie, on crée une fonction de \mathcal{D} , qui...

On considère

$$\varphi: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 0 & \text{si } |x| \geqslant 1 \\ \exp\left(-\frac{x^2}{1-x^2}\right) & \text{si } |x| < 1 \end{cases}$$

1. (a) Etudier les variations de $\varphi_{[-1,1[}$

- (b) Montrer que φ est de classe \mathcal{C}^1 sur \mathbb{R} .
- (c) Tracer la représentation graphique de φ .
- 2. (a) Montrer que, pour $k \in \mathbb{N}$, $\varphi_{]-1,1[}$ est de classe \mathcal{C}^k et qu'il existe $P_k \in \mathbb{R}[X]$ tel que $\forall x \in]-1,1[$, $\varphi^{(k)}(x) = \frac{P_k(x)}{(1-x^2)^{2k}}e^{-x^2/(1-x^2)}$.

En déduire que φ est de classe \mathcal{C}^{∞} sur \mathbb{R}

- (b) Montrer que $\mathcal D$ est un espace vectoriel sur $\mathbb R$ non réduit à 0.
- 3. Montrer que $\int_{\mathbb{R}} \varphi(t) dt$ est un réel strictement positif.

Par la suite, on notera $\Phi = \int_{\mathbb{R}} \varphi(t) dt$.

Pour tout $n \in \mathbb{N}$, on note

$$\varphi_n: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{n}{\Phi}\varphi(nx)$$

4. Montrer que pour tout $n \in \mathbb{N}^*$, $\int_{\mathbb{R}} \varphi_n(x) dx = 1$ et $\varphi_n \in \mathcal{D}$.

Pour tout fonction f continue par morceaux et tout entier naturel non nul n, on pose

$$(f \star \varphi_n) : x \mapsto \int_R f(t)\varphi_n(x-t)dt$$

- 5. Soit f une fonction continue par morceaux.
 - (a) Soit $x \in \mathbb{R}$. On considère (x_p) une suite convergente vers x. Encadrer $(f \star \varphi_n)(x_n) - (f \star \varphi_n)(x) - (x_n - x)(f \star \varphi_n')(x)$
 - (b) (*)En déduire que $f \star \varphi_n$ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $(f \star \varphi_n)'(x) = (f \star \varphi_n')(x)$

On admet que $f \star \varphi_n$ est en fait de classe \mathcal{C}^{∞} sur \mathbb{R} et pour tout $k \in \mathbb{N}$, $(f \star \varphi_n)^{(k)} = (f \star \varphi_n^{(k)})$

IV. Distributions

On dit que la suite $(\psi_n)_{n\in\mathbb{N}}$ de fonctions de \mathcal{D} converge dans \mathcal{D} vers la fonction ψ , noté $\psi_n \xrightarrow{\mathcal{D}} \psi$ si pour tout $k \in \mathbb{N}$, pour tout $\epsilon > 0$, $\exists N \in \mathbb{N}$ tel que $\forall n \geq N$, $\forall x \in \mathbb{R}$, $|\psi_n^{(k)}(x) - \psi^{(k)}(x)| < \epsilon$ et si il existe a > 0 tel que : $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}$, $|x| > a \Longrightarrow \psi_n(x) = 0$.

On admet qu'il existe f bien choisie telle que $\psi_n = f \star \varphi_n$ (où φ_n est définie en III) vérifie $\psi_n \xrightarrow{\mathcal{D}} \psi$ On appelle distribution sur \mathcal{D} , toute application linéaire $T : \mathcal{D} \to \mathbb{R}$ qui vérifie :

$$\forall \ \psi \in \mathcal{D}, \forall \ (\psi_n) \in \mathcal{D}^{\mathbb{N}}, \quad \psi_n \stackrel{\mathcal{D}}{\to} \psi \Longrightarrow T(\psi_n) \to T(\psi)$$

On note \mathcal{D}' , l'ensemble des distribution sur \mathcal{D} .

1. Montrer que si f est continue par morceaux sur \mathbb{R} , alors T_f définie par :

$$\forall \ \psi \in \mathcal{D}, \quad T_f(\psi) = \int_{-\infty}^{+\infty} f(x)\psi(x) dx$$

définit une distribution sur \mathcal{D} .

- 2. Soit $U: x \mapsto \begin{cases} 1 & \text{si } x \geqslant 0 \\ 0 & \text{si } x < 0 \end{cases}$. Justifier que T_U définit une distribution sur \mathcal{D} .
- 3. Soit $a \in \mathbb{R}$. Montrer que l'application δ_a qui à tout $\psi \in \mathcal{D}$ associe $\psi(a)$ est une distribution.
- 4. Soit T une distribution sur \mathcal{D} , on définit la distribution dérivée T' par :

$$\forall \ \psi \in \mathcal{D}, \quad T'(\psi) = -T(\psi')$$

- (a) Justifier que T' est une distribution sur \mathcal{D} .
- (b) Montrer que si f est de classe C^1 sur \mathbb{R} , alors $(T_f)' = T_{f'}$.
- (c) Montrer que $T_U' = \delta_0$