/2,5

/2

/2

Devoir surveillé n°3 CORRECTION

Exercice: EDL d'ordre 2 à coefficients non constants

On considère dans ce problème l'équation différentielle d'ordre 2, à coefficient non constants, de la variable x définie sur \mathbb{R}_+^* :

$$x^2y'' + 3xy' + y = 0 (E)$$

1. On note, pour tout $\alpha \in \mathbb{R}$, $f_{\alpha} : \mathbb{R}_{+}^{*} \to \mathbb{R}$, $x \mapsto x^{\alpha}$. f_{α} est de classe C^{2} sur \mathbb{R}_{+}^{*} et $\forall x > 0$, $f'_{\alpha}(x) = \alpha x^{\alpha-1}$ et $f''_{\alpha}(x) = \alpha(\alpha-1)x^{\alpha-2}$.

 f_{α} solution de $(E) \iff \forall x > 0, \alpha(\alpha - 1)x^{\alpha} + 3\alpha x^{\alpha} + x^{\alpha} = 0 \iff (\alpha^2 + 2\alpha + 1) = (\alpha + 1)^2 = 0$

/2,5 f_{α} est solution de (E) si et seulement si $\alpha = -1$.

- 2. Soit $g: \mathbb{R}_+^* \to \mathbb{R}$. On note $h_g: \mathbb{R}_+^* \to \mathbb{R}$, $x \mapsto \frac{g(x)}{x}$.
 - (a) La fonction $x \mapsto \frac{1}{x}$ est 2 fois dérivable sur \mathbb{R}_+^* , Donc par produit: /2

g est deux fois-dérivable sur \mathbb{R}_+^* si et seulement h_g l'est également.

(b) On suppose que ces deux fonctions sont de classe C^2 . (ce sera nécessaire pour que l'une ou l'autre solution d'une équation différentielle d'ordre 2). Dans ce cas, pour tout x > 0, $h_g(x) = xg(x)$, donc $h'_g(x) = xg'(x) + g(x)$ et $h''_g(x) =$

Ainsi pour tout x > 0, $x^2g''(x) = xh''_g(x) - 2xg'(x)$

 $\iff \forall \ x>0, \ x^2g''(x)+3xg'(x)+g(x)=0\\ \iff \forall \ x>0, \ xh_g''(x)-2xg'(x)+3xg'(x)+g(x)=0\\ \iff \forall \ x>0, \ xh_g''(x)+xg'(x)+g(x)=xh_g''(x)+h_g'(x)=0$ g solution de (E)

g solution de (E) si et seulement h_g' solution de (E'): xy' + y = 0

(c) C'est une équation homogène d'ordre 1

 $S_{(E')} = \{x \mapsto \lambda e^{-\ln x} = \frac{\lambda}{x}, \lambda \in \mathbb{R}\}$

(d) On intègre les solutions précédentes, on trouve alors

$$\exists \lambda, \mu \in \mathbb{R} \mid \forall x > 0, h_q(x) = \lambda \ln(x) + \mu$$

Et comme, pour tout x > 0 $g(x) = \frac{1}{x}h_q(x)$

g est solution de (E) si et seulement si il existe λ , $\mu \in \mathbb{R}$ tels que $g: x \mapsto \frac{\mu + \lambda \ln x}{\pi}$

- 3. Soit g une solution de problème de Cauchy $\begin{cases} x^2y'' + 3xy' + y &= 0 \\ y(1) &= y_1 \\ y'(1) &= y'_1 \end{cases}$ Alors comme g est solution de (E), il existe λ et $\mu \in \mathbb{R}$ tel que $g: x \mapsto \frac{\lambda \ln x + \mu}{x}$.

Puis $g(1) = \mu = y_1$

et pour tout x > 0, $g'(x) = \frac{\lambda - \lambda \ln x - \mu}{x^2}$, donc $g'(1) = \lambda - \mu = y'_1$.

On trouve donc $\mu = y_1$ et $\lambda = y_1' + y_1'$ /3

 $\forall \ (y_1,y_1') \in \mathbb{R}^2, \text{ le problème} \left\{ \begin{array}{rcl} x^2y'' + 3xy' + y & = & 0 \\ y(1) & = & y_1 & \text{admet une unique solution} : x \mapsto \frac{y_1 + (y_1' + y_1) \ln x}{x} \\ y'(1) & = & y_1' \end{array} \right.$

Problème. Fractions continues

A. Deux suites définies par récurrence

- 1. Etude des suites (p_n) et (q_n) .
 - (a) C'est direct:

$$p_0 = a_0$$
 $p_1 = a_0 a_1 + 1$ $p_2 = a_0 a_1 a_2 + a_2 + a_0$
 $q_0 = 1$ $q_1 = a_1$ $p_2 = a_1 a_2 + 1$

(b) On sait que

$$r_2(A) = a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = a_0 + \frac{a_2}{a_1 a_2 + 1} = \frac{a_0 a_1 a_2 + a_0 + a_2}{a_1 a_2 + 1}$$

$$\boxed{\frac{p_2}{q_2} = r_2(A)}$$
/1

- (c) Posons pour tout $n \in \mathbb{N}$, $\mathcal{P}_n : \langle q_n \rangle n \gg$
 - $-q_0=1>0$. Donc \mathcal{P}_0 est vraie.
 - $-q_1 = a_1q_0 + q_{-1} = a_1q_0 \geqslant q_0 = 1$, car $a_1 \in \mathbb{N}^*$ Donc \mathcal{P}_1 est vraie.
 - $--q_2 = a_2q_1 + q_0 \geqslant 1 + 1 = 2.$
 - Soit $n \in \mathbb{N}^*$. Supposons que \mathcal{P}_n et \mathcal{P}_{n+1} sont vraies.

$$q_{n+2} = a_{n+2}q_{n+1} + q_n \underset{a_{n+2} \in \mathbb{N}^*}{\geqslant} q_{n+1} + q_n \underset{\mathcal{P}_n - \mathcal{P}_{n+1}}{\geqslant} n + 1 + n = 2n + 1n + 2$$

car $n \ge 1$, donc $2n + 1 \ge n + 1 + 1 = n + 2$.

Donc \mathcal{P}_{n+2} est vraie.

$$\forall n \in \mathbb{N}, \quad q_n \geqslant n$$

/1

/1

O Remarques!

En fait dans le pire des cas, $a_k=1$, pour tout $k\in\mathbb{N}$ et donc $q_{n+2}=q_{n+1}+q_n$.

Alors q_n est la suite de FIBONACCI, on trouve plutôt $q_n\sim\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^n$, ce qui diverge beaucoup plus vite vers $+\infty$

(d) Soit, pour tout $n \in \mathbb{N}$, $x_n = p_{n+1}q_n - p_nq_{n+1}$.

$$\begin{array}{ll} x_{n+1} &= p_{n+2}q_{n+1} - p_{n+1}q_{n+2} = (a_{n+2}p_{n+1} + p_n)q_{n+1} - p_{n+1}(a_{n+2}q_{n+1} + q_n) \\ &= p_nq_{n+1} - p_{n+1}q_n = -x_n \end{array}$$

donc la suite (x_n) est géométrique de raison (-1). Son premier terme est $x_0 = p_1q_0 - p_0q_1 =$ /1 $(a_0a_1+1)1-a_0a_1=1.$

Pour tout entier
$$n \in \mathbb{N}$$
, $x_n = p_{n+1}q_n - p_nq_{n+1} = (-1)^n$.

(e) Soit δ un diviseur commun de p_n et q_n .

Alors il existe P et Q tels que $p_n = \delta P$ et $q_n = \delta Q$.

Ainsi $p_{n+1}\delta Q - q_{n+1}\delta P = \delta(p_{n+1}Q - q_{n+1}P) = (-1)^n$. Donc δ divise 1. La seule possibilité : $\delta \in \{-1, 1\}$,

la fraction $\frac{p_n}{q_n}$ est irréductible.

O Remarques!

→ On peut également invoquer le théorème de BÉZOUT, mais nous ne l'avons pas encore vu.

2. Lien avec $r_n(A)$. On note, pour $n \in \mathbb{N}$,

$$R_n: \mathbb{R}_+ \to \mathbb{R}, \ x \mapsto a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_n + x}}}}$$

(a) Soit $n \in \mathbb{N}$.

C'est tout simple, si $x_1=0$, on trouve $r_n:R_n(0)=r_n$. Puis, par définition en notant $x_2=\frac{1}{a_{n+1}+x}$:

$$R_{n+1}(x) = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_n + \frac{1}{a_{n+1} + x}}}} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{1}{a_n + x_2}}}} = R_n(x_2)$$

Pour tout
$$n \in \mathbb{N}$$
, et pour tout $x \in \mathbb{R}_+$, $r_n = R_n(0)$ et $R_{n+1}(x) = R_n\left(\frac{1}{a_{n+1}+x}\right)$.

/1,5

/2

/1

- (b) Notons, pour tout $n \in \mathbb{N}$, $Q_n : \ll \forall x \geqslant 0$, $R_n(x) = \frac{p_{n-1}x + p_n}{q_{n-1}x + q_n} \gg$.
 - $R_0(x) = a_0 + x = \frac{1x + a_0}{0x + 1} = \frac{p_{-1}x + p_0}{q_{-1}x + q_0}$ d'après les calculs faits plus haut.

— Soit $n \in \mathbb{N}$. On suppose que \mathcal{Q}_n est vraie.

Soit $x \ge 0$, d'après \mathcal{Q}_n (avec $x_2 \ge 0$ définit plus haut) :

$$R_{n+1}(x) = R_n(x_2) = \frac{p_{n-1}x_2 + p_n}{q_{n-1}x_2 + q_n} = \frac{p_{n-1}\frac{1}{a_{n+1}+x} + p_n}{q_{n-1}\frac{1}{a_{n+1}+x} + q_n} = \frac{p_{n-1} + p_n(a_{n+1} + x)}{q_{n-1} + q_n(a_{n+1} + x)}$$
$$= \frac{p_nx + (a_{n+1}p_n + p_{n-1})}{q_n + (a_{n+1}q_n + q_{n-1})} = \frac{p_nx + p_{n+1}}{q_nx + q_{n+1}}$$

Donc Q_{n+1} est vraie.

Ainsi, la récurrence est démontrée :

$$\forall n \in \mathbb{N}, \forall x \geqslant 0, R_n(x) = \frac{p_{n-1}x + p_n}{q_{n-1}x + q_n}$$

Remarques:

On peut voir les choses d'une autre façon.

Lorsqu'on « remonte » la fraction qui définit $R_n(x)$, on trouve toujours des numérateurs et des dénominateurs de la forme $\alpha x + \beta$.

Donc nécessairement $R_n(x) = \frac{Ax + B}{Cx + D}$, où A, B, C et D sont à trouver.

Mais par ailleurs, $R_n(0) = \frac{B}{D} = r_n = \frac{p_n}{q_n}$, donc $B = p_n$, $D = q_n$ Et $R_n(\infty) = \frac{A}{C} = r_{n-1} = \frac{p_{n-1}}{q_{n-1}}$, donc $A = p_{n-1}$ et $C = q_{n-1}$.

Cela permet de « retrouver » la formule de récurrence, par un raisonnement à la physicienne

Et
$$R_n(\infty) = \frac{A}{C} = r_{n-1} = \frac{p_{n-1}}{q_{n-1}}$$
, donc $A = p_{n-1}$ et $C = q_{n-1}$.

(c) Donc, en prenant
$$x = 0$$

Pour tout entier
$$n \in \mathbb{N}$$
, $r_n(A) = R_n(0) = \frac{p_n}{q_n}$.

On écrit par la suite r_n pour désigner $r_n(A)$

- 3. Définition de \tilde{A} .
 - (a) Soit $k \in \mathbb{N}$,

$$r_{k+1} - r_k = \frac{p_{k+1}}{q_{k+1}} - \frac{p_k}{q_k} = \frac{p_{k+1}q_k - q_{k+1}p_k}{q_kq_{k+1}} = \frac{(-1)^k}{q_kq_{k+1}}$$

Puis:

$$r_{k+2} - r_k = (r_{k+2} - r_{k+1}) + (r_{k+1} - r_k) = \frac{(-1)^{k+1}}{q_{k+2}q_{k+1}} - \frac{(-1)^k}{q_{k+1}q_k} = (-1)^k \left(\frac{-1}{q_{k+2}q_{k+1}} + \frac{1}{q_{k+1}q_k}\right)$$
$$= \frac{(-1)^k}{q_{k+2}q_{k+1}q_k} (-q_k + q_{k+2})$$

/2

/1,5

/2

Or $q_{k+2} = a_{k+2}q_{k+1} + q_k$, donc $q_{k+2} - q_k = a_{k+2}q_{k+1}$. En simplifiant par q_{k+1} :

Pour tout
$$k \in \mathbb{N}$$
, $r_{k+1} - r_k = \frac{(-1)^k}{q_k q_{k+1}}$ et $r_{k+2} - r_k = \frac{(-1)^k a_{k+2}}{q_{k+2} q_k}$.

►A la première lecture...

(b) Soyons bien attentif, il s'agit de suite extraites paires et impaires. Ainsi, les termes de la suite (r_{2n}) sont exactement $(r_0, r_2, r_4, r_6 \dots)$. Ainsi le n°terme de cette suite est r_{2n} . Et deux termes consécutifs sont r_{2n} et $r_{2(n+1)} = r_{2n+2}$. De même, les termes de la suite (r_{2n+1}) sont exactement $(r_1, r_3, r_5, r_7 \dots)$. Ainsi le n^e terme de cette suite est r_{2n+1} . Et deux termes consécutifs : r_{2n+1} et $r_{2(n+1)+1} = r_{2n+3}$.

Soit $n \in \mathbb{N}$,

•
$$c_n = r_{2n} = \frac{p_{2n}}{q_{2n}} \in \mathbb{Q} \text{ et } d_n = r_{2n+1} = \frac{p_{2n+1}}{q_{2n+1}} \in \mathbb{Q}$$

•
$$c_{n+1} - c_n = r_{2n+2} - r_{2n} = \frac{(-1)^{2n} a_{2n+2}}{q_{2n+2} q_{2n}} > 0$$
, donc (c_n) est croissante.

•
$$d_{n+1} - d_n = r_{2n+3} - r_{2n+1} = \frac{(-1)^{2n+1} a_{2n+3}}{q_{2n+3} q_{2n+1}} < 0$$
, donc (d_n) est décroissante.

•
$$d_{n+1} - d_n = r_{2n+3} - r_{2n+1} = \frac{(-1)^{2n+1}a_{2n+3}}{q_{2n+3}q_{2n+1}} < 0$$
, donc (d_n) est décroissante.
• $d_n - c_n = r_{2n+1} - r_{2n} = \frac{(-1)^{2n}}{q_{2n+1}q_{2n}} = \frac{1}{q_{2n+1}q_{2n}} \leqslant \frac{1}{(2n)(2n+1)} \to 0$.

Ainsi $[c_n, d_n]$ est une suite de segments emboîtés rationnels.

On note \tilde{A} , le nombre réel obtenu à partir de ces segments emboités : $\forall n \in \mathbb{N}, c_n \leqslant \tilde{A} \leqslant d_n$.

B. Bijection $\mathbb{N} \times (\mathbb{N}^*)^{\mathbb{N}} \to \mathbb{R}_+ \subset \mathbb{Q}, A \mapsto \overline{A}$

- 1. Etude de $\Omega: \mathbb{R} \to [0, 1]$.
 - (a) Soit $y \in [0, 1[$, alors |y| = 0 et donc $\theta(y) = y$. Donc, il existe $x(=y) \in \mathbb{R}$ tel que $y = \theta(x)$. Donc θ est surjective de \mathbb{R} sur [0,1]. Pour tout $x \in \mathbb{R}$, $\theta(x+1) = (x+1) - \lfloor x+1 \rfloor = (x+1) - (\lfloor x \rfloor + 1) = x - \lfloor x \rfloor = \theta(x)$. Or $x + 1 \neq x$. Donc θ n'est pas injective.

 θ est surjective de \mathbb{R} sur [0,1[, mais θ n'est pas injective.

- (b) Pour tout $x \in \mathbb{R}$, $\lfloor x \rfloor \in \mathbb{Z}$.
 - si $x \in \mathbb{Q}$, $\theta(x) = x \lfloor x \rfloor \in \mathbb{Q}$, car \mathbb{Q} est un corps. Donc $\theta(\mathbb{Q}) \subset (\mathbb{Q} \cap [0,1])$ (car θ est à valeurs dans [0,1]). Comme pour la surjectivité de θ , si $y \in (\mathbb{Q} \cap [0,1])$, alors $y = \theta(y) \in \theta(\mathbb{Q})$ car $y \in \mathbb{Q}$. Ainsi $(\mathbb{Q} \cap [0,1]) \subset \theta(\mathbb{Q})$.

Par double inclusion : $\theta(\mathbb{Q}) = (\mathbb{Q} \cap [0,1])$.

• si $x \notin \mathbb{Q}$, alors si $\theta(x) \in \mathbb{Q}$, $x = |x| + \theta(x) \in \mathbb{Q}$, ce qui est faux. Donc $\theta(x) \notin \mathbb{Q}$. Donc $\theta(\mathbb{R} \setminus \mathbb{Q}) = ((\mathbb{R} \setminus \mathbb{Q}) \cap [0,1])$ (car θ est à valeurs dans [0,1]). Comme plus haut, si $y \in (\mathbb{R} \setminus \mathbb{Q} \cap [0,1[), \text{ alors } y = \theta(y) \in \theta(\mathbb{R} \setminus \mathbb{Q}) \text{ car } y \in \mathbb{R} \setminus \mathbb{Q}.$ Ainsi $(\mathbb{R} \setminus \mathbb{Q} \cap [0,1[) \subset \theta(\mathbb{R} \setminus \mathbb{Q}).$

Par double inclusion : $\theta(\mathbb{R} \setminus \mathbb{Q}) = ((\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1]).$

 $\theta(\mathbb{Q}) = (\mathbb{Q} \cap [0,1]) \text{ et } \theta(\mathbb{R} \setminus \mathbb{Q}) = ((\mathbb{R} \setminus \mathbb{Q}) \cap [0,1])$

(c) Clairement :
$$y = \frac{p}{q} \in \mathbb{Q}^* \iff \frac{1}{y} = \frac{q}{p} \in \mathbb{Q}^*$$
.
Donc si $X \in \mathbb{R} \setminus \mathbb{Q}$ (donc $x \neq 0$), alors $\frac{1}{X} \in \mathbb{R} \setminus \mathbb{Q}$,
Donc si $x \in \mathbb{R} \setminus \mathbb{Q}$ d'après (b) : $X = \theta(x) \in \mathbb{R} \setminus \mathbb{Q}$ et donc $\Omega(x) = \frac{1}{\theta(x)} \in \mathbb{R} \setminus \mathbb{Q}$. /1,5

$$\mathbb{R} \setminus \mathbb{Q}$$
 est stable par Ω

- 2. Etude d'un exemple.
 - (a) $2 < \sqrt{5} < 3$ (il suffit d'élever au carré pour vérifier).

Donc
$$\frac{3}{2} < \frac{1+\sqrt{5}}{3} < 2$$
, donc $a_0 = \lfloor \frac{1+\sqrt{5}}{2} \rfloor = 1$.
Et donc $\theta(\frac{1+\sqrt{5}}{2}) = \frac{1+\sqrt{5}}{2} - a_0 = \frac{1+\sqrt{5}}{2} - 1 = \frac{\sqrt{5}-1}{2}$.
Ainsi $\xi_1 = \frac{1}{\theta(\frac{1+\sqrt{5}}{2})} = \frac{2}{\sqrt{5}-1} = \frac{2(\sqrt{5}+1)}{\sqrt{5}^2-1} = \frac{\sqrt{5}+1}{2} = x$

$$a_0 = 1 \text{ et } \xi_1 = \frac{2}{\sqrt{5}-1} = x$$

(b) La suite $(\xi_m)_{m\in\mathbb{N}}$ est donc constante de valeur égale à x. Et donc (a_n) est également constante, de valeur égale à 1.

$$\forall n \in \mathbb{N}, \quad \xi_n = x, \ a_n = 1$$

- 3. Développement en fraction continue de x.
 - (a) Soit $p, s \in \mathbb{N}$,

$$\xi_{p+s} = \Omega^{p+s}(x) = (\Omega^s \circ \Omega^p)(x) = \Omega^s (\Omega^p(x)) = \Omega^s(\xi_p)$$
Pour tout $p, s \in \mathbb{N}, \, \xi_{p+s} = \Omega^s(\xi_p).$

/1

/1,5

(b) $x \ 0$, donc $a_0 = \lfloor \xi_0 \rfloor = \lfloor x \rfloor \in \mathbb{Z} \cap \mathbb{R}_+ = \mathbb{N}$. Soit $n \in \mathbb{N}^*$, $\xi_{n-1} \in [0, 1[\cap(\mathbb{R} \setminus \mathbb{Q}) \subset]0, 1[$. Donc $0 < \xi_{n-1} < 1$ et donc $\frac{1}{\xi_{n-1}} > 1$ et donc $a_n = \lfloor \frac{1}{\xi_{n-1}} \rfloor \geqslant 1$.

$$a_0 \in \mathbb{N}, \forall n \in \mathbb{N}^*, a_n \in \mathbb{N}^*.$$

On note alors $A = (a_0, a_1, \dots a_n \dots)$ comme en partie précédente.

(c) On note pour tout $n \in \mathbb{N}$, $y_n = \frac{p_{n-2} + \xi_n p_{n-1}}{q_{n-2} + \xi_n q_{n-1}}$. On va faire apparaitre

$$\xi_{n+1} = \Omega(\xi_n) = \frac{1}{\theta(\xi_n)} = \frac{1}{\xi_n - \lfloor \xi_n \rfloor} = \frac{1}{\xi_n - a_n}$$

Donc $\xi_n = a_n + \frac{1}{\xi_{n+1}}$.

$$y_n = \frac{p_{n-2} + \left(a_n + \frac{1}{\xi_{n+1}}\right) p_{n-1}}{q_{n-2} + \left(a_n + \frac{1}{\xi_{n+1}}\right) q_{n-1}}$$

$$= \frac{\left(a_n p_{n-1} + p_{n-2}\right) + p_{n-1} \frac{1}{\xi_{n+1}}}{\left(a_n q_{n-1} + q_{n-2}\right) + q_{n-1} \frac{1}{\xi_{n+1}}}$$

$$= \frac{p_n + p_{n-1} \frac{1}{\xi_{n+1}}}{q_n + q_{n-1} \frac{1}{\xi_{n+1}}} = \frac{p_n \xi_{n+1} + p_{n-1}}{q_n \xi_{n+1} + q_{n-1}} = y_{n+1}$$

où pour finir, on a multiplié numérateur et dénominateur par ξ_{n+1} . Donc la suite y_n est constante et vaut

$$y_0 = \frac{p_{-2} + \xi_0 p_{-1}}{q_{-2} + \xi_0 q_{-1}} = \frac{0 + x \times 1}{1 + x \times 0} = x$$
Pour tout entier $n : x = \frac{p_{n-2}(A) + \xi_n p_{n-1}(A)}{q_{n-2}(A) + \xi_n q_{n-1}(A)}$

 $\begin{array}{l} \bigcirc \text{ Remarques !} \\ & \stackrel{\frown}{\triangleright} On \ notera \ en \ fait \ que \ x = R_n(\frac{1}{\xi_{n+1}}) \dots \\ & \stackrel{\frown}{\triangleright} En \ fait \ ici, \ on \ a \ x \in \mathbb{R} \setminus \mathbb{Q}, \ on \ crée \ alors \ A(x) \ et \ on \ cherche \ à \ savoir \ si \ \widetilde{A(x)} = x \dots \\ \end{array}$

(d) Soit $n \in \mathbb{N}$, (on continue de supprimer le lien avec A, encombrant dans les calculs):

$$x - r_n(A) = \frac{p_n + \xi_n p_{n-1}}{q_n + \xi_n q_{n-1}} - \frac{p_n}{q_n} = \frac{\xi_n (p_{n-1} q_n - p_n q_{n-1})}{q_n (q_n + \xi_n q_{n-1})}$$

Puis, comme $p_{n-1}q_n - p_nq_{n-1} = -(p_nq_{n-1} - p_{n-1}q_n) = -(-1)^{n-1} = (-1)^n$,

$$x - r_n(A) = \frac{(-1)^n}{q_n} \frac{\xi_n}{q_n + \xi_n q_{n-1}}$$

Or $q_n \in \mathbb{N}$, $\xi_n \in]0, 1[$, donc $x - r_n(A)$ est du signe de $(-1)^n$. Ainsi $x - r_{2n}(A) \ge 0$ et $x - r_{2n+1}(A) \le 0$.

$$\boxed{\forall n \in \mathbb{N} : r_{2n}(A) \leqslant x \leqslant r_{2n+1}(A)}$$

(e) D'après la première partie les segments $[(r_{2n}(A), r_{2n+1}(A)]$ sont emboités, donc ne définissent qu'unique point (ici x et \hat{A}).

Donc
$$x = \tilde{A}$$
.

Ainsi, tout élément $x \in \mathbb{R}_+ \setminus \mathbb{Q}$ admet un antécédent A par F.

/2

/1,5

/1,5

(f) D'après la question 2.(b), on a

$$\boxed{\frac{1+\sqrt{5}}{2} = F((1,1,1,\ldots,1,\ldots)) = 1 + \frac{1}{1+\frac{1}{\ddots}}}$$

4. Unicité d'écriture. Soit A une suite quelconque et $x = \hat{A}$.

Pour ne pas confondre on va alors noter $\alpha_n = \lfloor \xi_n(x) \rfloor$ défini à partir de x, dans un second

(a) On a vu
$$r_0 \leqslant x \leqslant r_1$$
. Or $r_0 = a_0$ et $r_1 = a_0 + \frac{1}{a_1} \in [a_0, 1[$.
Donc nécessairement $x \in [a_0, a_0 + 1[$. Et comme $a_0 \in \mathbb{N}$:

Nécessairement
$$\lfloor x \rfloor = a_0 = \alpha_0$$
.

- (b) On démontre le résultat par récurrence (forte). On note \mathcal{Q}_n : « $a_n = \alpha_n$ »
 - Q_0 est vraie.
 - Soit $n \in \mathbb{N}$. Supposons que pour tout $k \leq n$, \mathcal{Q}_k est vraie.

On a alors pour tout $k \leq n$, $a_k = \alpha_k$ et les mêmes coefficients pour p_k , q_k et r_k . En reprenant les notations de la partie A

$$R_n(\frac{1}{t}) = a_0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_n + \frac{1}{t}}}} = \frac{p_{n-1}\frac{1}{t} + p_n}{q_{n-1}\frac{1}{t} + q_n} = \frac{p_{n-1} + p_n t}{q_{n-1} + q_n t}$$

On a vu que $x=\dfrac{p_{n-1}+p_n\xi_{n+1}}{q_{n-1}+q_n\xi_{n+1}}=R_n(\frac{1}{\xi_{n+1}}).$ Alors que $r_{n+1}=R_n(\frac{1}{a_{n+1}})$ et $r_{n+2}=R_n(\frac{1}{a_{n+1}+\frac{1}{a_{n+2}}}).$

Alors que
$$r_{n+1} = R_n(\frac{1}{a_{n+1}})$$
 et $r_{n+2} = R_n(\frac{1}{a_{n+1} + \frac{1}{a_{n+2}}})$.

 R_n est une homographie, elle est localement monotone, donc comme x est comprise entre

nécessairement
$$\frac{1}{\xi_{n+1}}$$
 est comprise entre $\frac{1}{a_{n+1}}$ et $\frac{1}{a_{n+1} + \frac{1}{a_{n+2}}}$.

Donc $\frac{1}{a_{n+1} + \frac{1}{a_{n+2}}} \leqslant \frac{1}{\xi_{n+1}} \leqslant \frac{1}{a_{n+1}}$ et donc $a_{n+1} \leqslant \xi_{n+1} \leqslant a_{n+1} + \frac{1}{a_{n+2}}$.

 a_{n+1} est un nombre entier, $\frac{1}{a_{n+2}} \in]0,1[$, donc nécessairement : $a_{n+1} = \lfloor \xi_{n+1} \rfloor = \alpha_{n+1}$. Ainsi Q_{n+1} est démontré.

Ainsi, pour tout
$$n \in \mathbb{N}$$
, $a_n = \alpha_n$

Cela signifie que pour tout $x \in \mathbb{R} \setminus \mathbb{Q}$, il y a au plus un seul antécédent par F.

/0,5

/2

/2

/1,5

/0,5

Ainsi, F est injective. En outre, F étant surjective, F est bijective

5. Soit $m \in \mathbb{N}$. Notons, pour simplifier $y = \xi_m$.

On note B, la suite obtenue pour y, comme on a obtenu A pour x. On a donc $y = \widetilde{B}$ (et $x = \widetilde{A}$). on a vu en question 2.a. que $\xi_{m+s} = \Omega^s(\xi_m) = \Omega^s(y)$. Pour tout $s \in \mathbb{N}$,

$$b_s = \lfloor \xi_s(y) \rfloor = \lfloor \Omega^s(y) \rfloor = \lfloor \xi_{m+s}(x) \rfloor = a_{m+s}$$

Donc B est la suite extraite de A, à partir du rang m

$$\xi_m = \widetilde{B} \text{ avec } B = (a_m, a_{m+1}, \dots) = (a_n)_{n \geqslant m}$$

C. Une classe d'équivalence sur les fractions continues

Pour $x, y \in \mathbb{R}$, on dit que x est congruent à y et on note x = y, si il existe $a,b,c,d\in\mathbb{Z}$ tel que $x=\cfrac{ay+b}{cy+d}$ avec $ad-bc\in\{-1,1\}.$

- 1. $\bullet = \text{est r\'eflexive}$: pour tout $x \in \mathbb{R}$, $x = \frac{1x+0}{0x+1}$ avec $1 \times 1 0 \times 0 = 0$ donc x = x.
 - \simeq est symétrique : supposons que $x \simeq y$, donc $x = \frac{ay+b}{cy+d}$ avec $ad-bc \in \{-1,1\}$,

On a alors cyx + dx = ay + b donc (cx - a)y = b - dx, donc $y = \frac{-dx + b}{cx - a}$ et $(-d) \times (-a) - (b \times c) = ad - bc \in \{-1, 1\}.$

Ainsi on a y = x.

• riangle est transitive : supposons que x riangle y et y riangle z.

donc
$$x = \frac{ay + b}{cy + d}$$
 avec $ad - bc \in \{-1, 1\}$ et $y = \frac{a'z + b'}{c'z + d'}$ avec $a'd' - b'c' \in \{-1, 1\}$.

On a alors
$$x = \frac{a\frac{a'z+b'}{c'z+d'} + b}{c\frac{a'z+b'}{c'z+d'} + d} = \frac{(aa'+bc')z + (ab'+bd')}{(ca'+dc')z + (cb'+dd')} = \frac{Az+B}{Cz+D}.$$

et
$$AD - BC = (aa' + bc')(cb' + dd') - (ab' + bd')(ca' + dc') = aa'dd' + bc'cb' - ab'dc' - bd'ca'$$

= $ad(a'd' - b'c') + bc(b'c' - a'd') = (ad - bc)(a'd' - b'c') = \pm 1$

≏ est une relation d'équivalence.

- 2. Classe de 0
 - (a) Soit r = 0. Donc il existe a, b, c et $d \in \mathbb{Z}$ tels que $r = \frac{a \times 0 + b}{c \times 0 + d} = \frac{b}{d} \in \mathbb{Q}$. /1

$$r = 0 \Longrightarrow r \in \mathbb{Q}$$

(b) Soit
$$r = \frac{p}{q} \in \mathbb{Q}$$
 avec p et q irréductibles.
On admet qu'il existe $u, v \in \mathbb{Z}$ tel que $up + vq = 1$.
On a alors $r = \frac{p}{q} = \frac{v \times 0 + p}{(-u) \times 0 + q}$ et $vq - (-u)p = vq + up = 1$.

r est congruent 0.

(c) On a montrer par double inclusion que

 $\overline{0} = \mathbb{Q}$

3. Classe d'un irrationnel.

On admet le résultat suivant :

Si
$$y=\frac{P\zeta+R}{Q\zeta+S}$$
 avec $Q>S>0$ et $PS-QR=\pm 1$ alors il existe $n\in\mathbb{N}$ tel que $\frac{R}{S}=r_{n-1}(y)$ et $\frac{P}{Q}=r_n(y)$

Or ce couple en question est un couple associée à la réduite précédente (algorithme d'Euclide).

P \(Q = 1. Si l'on cherche les couples (u, v) de Bézout tel que uP - vQ = 1, On trouve qu'il n'y a qu'un unique couple (u, v) tel que u < Q et v < P. Or ce couple en question est un couple associée à la réduite précédente (algorithm) Et ici, il s'agit bien d'un tel couple recherché car on sait que S < Q, donc nécessairement $R = p_{n-1}$. Et ici, il s'agit bien d'un tel couple recherché car on sait que S < Q, donc $S = v = q_{n-1}$ et ensuite

Soit $x \in \mathbb{R} \setminus \mathbb{Q}$, il existe donc $A \in \mathbb{N} \times (\mathbb{N}^*)^{\mathbb{N}}$ tel que $x = \tilde{A}$

(a) On suppose le théorème aquis.

Comme $\frac{R}{S}$ est une fraction irréductible, on a $R = \epsilon p_{n-1}$ et $S = \epsilon q_{n-1}$ avec $\epsilon \in \{-1, 1\}$.

Et de même $P = \epsilon' p_n$ et $Q = \epsilon' q_n$ avec $\epsilon' \in \{-1, 1\}$.

Enfin, comme $PS - QR = \pm 1 = p_n q_{n-1} - q_n p_{n-1}$, nécessairement $\epsilon = \epsilon'$. Et donc $y = \frac{\epsilon(p_n \zeta + p_{n-1})}{\epsilon(q_n \zeta + q_{n-1})} \iff \zeta = \frac{q_{n-1} y - p_{n-1}}{-q_n y + pn}$. Et de même : $y = \frac{p_n \xi_{n+1} + p_{n-1}}{q_n \xi_{n+1} + q_{n-1}}$, donc par injectivité de l'homographie

Nécessairement $\zeta = \xi_{n+1}(y)$.

/2

/1,5

/1,5

/1

/2

/1,5

(b) Soit $m \in \mathbb{N}$ et $\xi_m = [a_m, a_{m+1}, \dots a_r \dots]$.

Avec cette définition de (ξ_m) , on a vu en B.3. que $x = \frac{p_n + \xi_n p_{n-1}}{q_n + \xi_n q_{n-1}}$ et par ailleurs en A.1.(d) : $p_n q_{n-1} - q_n p_{n-1} = (-1)^{n-1} \in \{-1, 1\}$

Donc $x \simeq \xi_m$.

(c) Supposons que y = x Pour fixer les choses, on note $y = \frac{Ax + B}{Cx + D}$ avec $AD - BC = \pm 1$. /1

Par simple transitivité : $\forall m \in \mathbb{N}, y = \xi_m$.

(d) On conserve les notations (p_n) et (q_n) définie à partir de x.

On sait que pour tout $n \in \mathbb{N}$, x est compris entre r_n et r_{n+1} (d'après A.3.(b)),

donc $|x - r_n| \le |r_{n+1} - r_n| = \frac{1}{q_n q_{n+1}}$ (d'après A.3.(a))

Enfin, comme (q_n) est croissante, $q_{n+1}q_n > q_n^2$ et donc

 $\forall m \in \mathbb{N}, \quad |x - r_m| < \frac{1}{q_m^2}$

(e) Cela signifie, en multipliant par $q_m > 0$: $|p_m - xq_m| < \frac{1}{q_m}$, soit $p_m - xq_m = \frac{\delta_m}{q_m}$ avec $|\delta_m| < 1.$

Donc pour tout $m \in \mathbb{N}$, il existe $\delta_m \in]-1,1[$ tels que $p_{m-1}=xq_{m-1}+\frac{\delta_m}{q_{m-1}}.$

(f) Donc $Cp_{m-1} + Dq_{m-1} = (Cx + D)q_{m-1} + \frac{C\delta_m}{q_{m-1}}$ et $Cp_{m-2} + Dq_{m-2} = (Cx + D)q_{m-2} + \frac{C\delta_{m-1}}{q_{m-2}}$

Or $\frac{C\delta_m}{q_{m-1}} \to 0$ car $(q_{m-1}) \to \infty$.

Puis (Cx + D) > 0 et $q_{m-1} > q_{m-2}$, pour tout entier m.

Donc il existe $m \in \mathbb{N}$ tel que $Cp_{m-1} + Dq_{m1} > Cp_{m-2} + Dq_{m-2} > 0$.

(g) Lorsqu'on applique la transitivité à $y = \frac{Ax + B}{Cx + D}$ et $x = \frac{p_{m-1}\xi_m + p_{m-2}}{q_{m-1}\xi_m + q_{m-2}}$, il vient :

$$y = \frac{(Ap_{m-1} + Bq_{m-1})\xi_m + (Ap_{m-2} + Bq_{m-2})}{(Cp_{m-1} + Dq_{m-1})\xi_m + (Cp_{m-2} + Dq_{m-2})}$$

D'après la question précédente, il existe m tel que $Cp_{m-1} + Dq_{m1} > Cp_{m-2} + Dq_{m-2} > 0$. On peut alors appliquer le résultat admis,

Donc il existe $n\in\mathbb{N}$ tel que $y=\frac{p_{n-1}(y)\xi_m+p_{n-2}(y)}{q_{n-1}(y)\xi_m+q_{n-2}(y)}$

(h) On applique alors le résultat de la question (a) : $\xi_m(x) = \xi_n(y)$. Par unicité du développement en fraction continue de $\xi_m(x) = \xi_n(y)$, on trouve que pour tout $h \ge 0$, $a_{m+h}(x) = b_{n+h}(y)$.

/1,5

/2

/1

/2

Si x = y, et si $x = \widetilde{A}$ et $y = \widetilde{B}$, alors il existe $m, n \in \mathbb{N}$ tel que $(a_h)_{h \ge m} = (b_h)_{h \ge n}$.

4. Nombre quadratique.

On dit que x a un développement en fraction continue périodique s'il existe $k \in \mathbb{N}^*$ et $m \in \mathbb{N}$ tels que $\xi_{m+k} = \xi_m$.

(a) Supposons qu'il existe $(m,k) \in \mathbb{N} \times \mathbb{N}^*$ tel que $\xi_{m+k} = \xi_m$, Soit s > m, alors (avec les notations du début de la partie B).

$$\xi_{s+k} = \Omega^{s+k}(x) = \Omega^{s-m} \circ \Omega^{m+k}(x) = \Omega^{s-m}(\xi_{m+k}) = \Omega^{s-m}\Omega^m(x) = \xi_s$$

Pour tout s > m, $\xi_{s+k} = \xi_s$. (b) On trouve par développement en fraction continue de ξ_m (avec la formule B3.(c)):

$$\xi_m = \frac{p_{k-1}\xi_k(\xi_m) + p_{k-2}(\xi_m)}{q_{k-1}\xi_k(\xi_m) + q_{k-2}(\xi_m)} = \frac{A\xi_{k+m} + B}{C\xi_{m+k} + D} = \frac{A\xi_m + B}{C\xi_m + D}$$

où $A, B, C, D \in \mathbb{N}^*$, car il s'agit d'éléments de type p_k ou q_k .

$$\xi_m = \frac{A\xi_m + B}{C\xi_m + D} \text{ avec } A, B, C, D \in \mathbb{N}^*$$

(c) On a donc $C\xi_m^2 + (D-A)\xi_m - B = 0$. Donc ξ_m est un irrationnel quadratique $(C \neq 0)$.

Par ailleurs, on sait que $x = \frac{a\xi_m + b}{c\xi_m + d}$, donc $\xi_m = \frac{dx - b}{-cx + a}$ et donc

$$C\left(\frac{dx-b}{-cx+a}\right)^{2} + (D-A)\frac{dx-b}{-cx+a} - B = 0$$

En mettant au même dénominateur, on trouve que x est racine d'un polynôme à coefficients entiers, de degré 2 : $(Cd^2 - Bc^2 + (D - A)cd)x^2 + \dots = 0$.

Si x admet un développement en fraction continue périodique, x est quadratique.

(d) Réciproquement, supposons que x est un nombre quadratique.

On note $[a_0, a_1 \dots a_n, \dots]$, le développement en fraction continue de x. L'idée consiste a montrer que chaque ξ_n est un nombre irrationnel quadratique. Pour cela il faut leur associer une polynôme de degré 2 T_n à coefficients entiers et donc ξ_n est une racine.

Nous allons montrer que la suite (T_n) ne prend qu'un nombre fini de valeurs, donc qu'il existe m, n tel que $\xi_n = \xi_m$, à partir de cet instant la développement sera périodique.

On définit par récurrence, des polynômes $T_n = \alpha_n X^2 + \beta_n + \alpha_{n-1}$:

 T_0 est un polynôme à coefficients entiers donc $x=\xi_0$ est une racine.

On peut écrire $T_0 = \alpha_0 X^2 + \beta_0 X + \alpha_{-1}$ (ce qui définit par la même occasion $\alpha_0, \beta_0, \alpha_{-1}$.

— Avec $\xi_n = a_n + \frac{1}{\xi_{n+1}}$, on a donc

$$T_n(\xi_n) = 0 \Longrightarrow \alpha_n \left(a_n + \frac{1}{\xi_{n+1}} \right)^2 + \beta_n \left(a_n + \frac{1}{\xi_{n+1}} \right) + \alpha_{n-1} = 0$$

 $\implies T_n(a_n)\xi_{n+1}^2 + 2T'_n(a_n)\xi_{n+1} + \alpha_n = 0$

Et donc, avec, $\alpha_{n+1} = T_n(a_n)$ et $\beta_{n+1} = T'_n(a_n)$, on a $T_{n+1}(\xi_{n+1}) = 0$. Ainsi, T_{n+1} est bien un polynôme à coefficients entiers (puisque T_n l'est).

Miracle, il y a un invariant simple associé à la suite T_n , la suite des discriminant :

$$\Delta_{n+1} = \beta_{n+1}^2 - 4\alpha_n \alpha_{n+1} = (2\alpha_n a_n + \beta_n)^2 - 4\alpha_n (\alpha_n a_n^2 + \beta_n a_n + \alpha_{n-1})$$
$$= \beta_n^2 - 4\alpha_n \alpha_{n-1} = \Delta_n$$

Nous savons par ailleurs que pour tout $n \in \mathbb{N}$, $a_n \ge 1$, donc $\xi_n > 1$ (il ne peut pas être un entier).

Notons, pour tout $n \in \mathbb{N}$, $\overline{\xi_n}$, l'autre racine (avec ξ_n) de T_n . Alors, on a

$$T_{n+1}(\overline{\xi_{n+1}}) = 0 = T_n(a_n)\overline{\xi_{n+1}}^2 + 2T'_n(a_n)\overline{\xi_{n+1}} + \alpha_n$$

Donc

$$\alpha_n \left(a_n + \frac{1}{\overline{\xi_{n+1}}} \right)^2 + \beta_n \left(a_n + \frac{1}{\overline{\xi_{n+1}}} \right) + \alpha_{n-1} = 0$$

Or on reconnait $T_n(a_n + \frac{1}{\overline{\xi_{n+1}}})$, donc $\overline{\xi_n} = a_n + \frac{1}{\overline{\xi_{n+1}}}$. Or si tous les $\overline{\xi_n}$ sont positif, on aurait donc $\lfloor \overline{\xi_n} \rfloor = a_n$ et donc $x = \xi_0$ et $\overline{x} = \overline{\xi_0}$ aurait le même développement en fractions continues.

Cela signifierait que $x = \overline{x}$, donc $\Delta = 0$ et x sera rationnel, ce qui est faux.

Donc il existe
$$n_0 \in \mathbb{N}$$
, tel que $\lfloor \overline{\xi_{n_0}} \rfloor \neq a_{n_0}$, pour cela il faut que $\overline{\xi_{n_0}} < 0$.

dans ce cas $\overline{\xi_{n_0+1}} = \frac{1}{\overline{\xi_{n_0}} - a_{n_0}} < 0$ et pour tout $n \ge n_0$, $\overline{\xi_n} < 0$

Toujours: $\frac{\alpha_{n-1}}{\alpha_n} = \xi_n \times \frac{\zeta_n}{\zeta_n} < 0.$

Donc $\beta_n^2 = \Delta + \alpha_n \alpha_{n-1}$, ne peut prendre qu'un nombre fini de grandeur entières. Par conséquent, il existe m_1 et $m_2 > n_0$ tel que $\beta_{m_1} = \beta_{m_2}$, $\alpha_{m_1} = \alpha_{m_2}$ et $\xi_{m_1} = \xi_{m_2}$. L'algorithme déterministe qui suit donne alors $a_{m_1} = a_{m_2}$, puis $a_{m_1+1} = a_{m_2+1}$ puis ... La réciproque est démontrée :

si x est irrationnel quadratique alors la fraction continue de x est périodique.

/4