Devoir à la maison n°7

Lorsqu'une question est jugée, a priori, plus difficile, elle est précédée du symbole (*) voire (**). La notation tiendra particuliérement compte de la qualité de la rédaction, la précision des raisonnements et l'énoncé des formules utilisées.

Exercice 1

— Calculer
$$\lim_{x \to \frac{\pi}{4}} \frac{e^{\tan x} - e^{\sin(2x)}}{\ln(\tan(x))}$$
.

- Calculer
$$\lim_{x \to \frac{\pi}{4}} \frac{e^{\tan x} - e^{\sin(2x)}}{\ln(\tan(x))}$$
.
- Calculer $\lim_{x \to +\infty} \left(\left(\prod_{k=1}^{n} (x+k) \right)^{1/n} - x \right)$.

Donner la valeur du $DL_5(a)$ pour a > 1 et du $DL_5(+\infty)$.

Problème

I. Sommes des puissances des racines

Soit Q un polynôme de degré n de $\mathbb{C}[X]: Q(X) = \sum_{k=1}^{n} b_k X^k$.

On note $\alpha_1, \dots, \alpha_n$ ses racines complexes, distinctes ou non et on a donc : $Q(X) = b_n \prod_{i=1}^{n} (X - \alpha_i)$.

On note, pour tout $k \in \mathbb{N}^*$: $T_k = \sum_{i=1}^{n} \alpha_i^k$ et $T_0 = n$.

L'objectif est de calculer les termes de la suite $(T_k)_{k\in\mathbb{N}}$ à partir des coefficients du polynôme Q.

1. Soit $a \in \mathbb{C}$.

Démontrer que, pour tout entier naturel $m \ge 1$, on a : $X^m - a^m = (X - a) \left(\sum_{k=0}^{m-1} a^k X^{m-1-k} \right)$.

- 2. Soit $i \in [1, n]$. On note Q_i le polynôme défini par : $Q_i(X) = \frac{Q(X)}{X \alpha_i}$. Montrer que Q' est une combinaison linéaire des Q_i que l'on déterminera.
- 3. En remarquant que $Q_i(X) = \frac{Q(X) Q(\alpha_i)}{X \alpha_i}$, montrer que l'on a :

$$Q_i(X) = \sum_{r=1}^n \left(\sum_{k=r}^n b_k \alpha_i^{k-r} \right) X^{r-1}$$

4. Déduire des questions précédentes que l'on a :

$$\forall r \in [1, n], \quad rb_r = \sum_{j=0}^{n-r} b_{r+j} T_j$$

- 5. Soit $k \in [1, n-1]$. Exprimer T_k en fonction de T_0, \dots, T_{k-1} et des coefficients du polynôme Q.
- 6. Soit $k \ge n$.
 - (a) Montrer que l'on a : $\sum_{k=0}^{n} b_j T_{k-n+j} = 0$.
 - (b) Exprimer alors T_k à l'aide de $T_{k-n}, T_{k-n+1}, \cdots, T_{k-1}$ et des coefficients du polynôme Q.
- 7. Conclure.

II. Polynômes cyclotomiques

Pour tout $n \in \mathbb{N}^*$, on dit qu'une racine n-ième de l'unité z est primitive si $z^d \neq 1$, pour tout entier $d \in [1, n-1]$.

On note \mathbb{P}_n , l'ensemble des racines primitives n-ième de l'unité.

On a donc $\mathbb{P}_1 = \{1\}$, $\mathbb{P}_2 = \{-1\}$ et $\mathbb{P}_3 = \{j, j^2\}$.

On définit $\Phi_n \in \mathbb{C}[X]$ par

$$\Phi_n = \prod_{z \in \mathbb{P}_n} (X - z)$$

- 1. Exprimer Φ_4 .
- 2. Montrer que pour tout $n \ge 1$, on a

$$X^n - 1 = \prod_{d|n} \Phi_d$$

le produit étant pris sur l'ensemble des entiers d > 0 divisant n.

Quelle résultat, vu dans le cours d'arithmétique, obtient-on si l'on regarde alors les degrés de ces polynômes?

3. (a) Montrer que si p est un nombre premier et $k \ge 1$ est un entier, alors

$$\Phi_{p^k} = X^{(p-1)p^{k-1}} + X^{(p-2)p^{k-1}} + \dots + X^{p^{k-1}} + 1$$

- (b) Calculer Φ_n , pour $n \in \{5, 6\}$.
- 4. (a) Soit $n \in \mathbb{N}$, $n \ge 2$. Calculer $\Phi_n(0)$
 - (b) Calculer, pour $n \ge 2$, $\Phi_n(1)$ en fonction de la décomposition en facteurs premiers de n. Raisonner par récurrence, en utilisant la première question.

III. Polynômes de $\mathbb{Z}[X]$ à racines de module 1

Soit $P \in \mathbb{Z}[X]$, un polynôme unitaire de degré $n \ge 1$, irréductible dans $\mathbb{Q}[X]$ et dont tous les racines complexes sont de module 1.

L'objectif est de montrer que toutes les racines de P sont alors des racines de l'unité. Soient $z_1, \ldots z_n$ les racines complexes de P comptées avec leurs multiplicités, de sorte que

$$P = \prod_{i=1}^{n} (X - z_i)$$

Pour tout entier k, $S_k = z_1^k + z_2^k + \cdots + z_n^k$.

- 1. Pourquoi est-ce que pour tout entier $k \in \mathbb{N}$, $S_k \in \mathbb{Z}$.
- 2. Montrer qu'il existe deux entiers k et ℓ $(0 \le k < \ell)$ tels que $S_{k+i} = S_{\ell+i}$ pour tout $i \in \{0, 1, \dots n\}$.

On fixe k et ℓ .

- 3. Montrer que $\sum_{i=1}^n F(z_i)(z_i^{\ell} z_i^k) = 0$, pour tout polynôme $F \in \mathbb{C}[X]$ de degré inférieur ou égal à n.
- 4. Montrer que $z_1, z_2, \dots z_n$ sont deux à deux distincts. En déduire que $z_i^{\ell-k}=1$, pour tout $i\in\{1,2,\dots n\}$ et conclure.