Devoir à la maison n°10

Lorsqu'une question est jugée, a priori, plus difficile, elle est précédée du symbole (*) voire (**). La notation tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des formules utilisées.

Exercice 1

Soient $\mathcal C$ un cercke de centre O et de rayon r, A et B deux points distincts de $\mathcal C$. Le but de cet exercice est de montrer le théorème de l'angle au centre :

M, un point du plan distinct de
$$\overrightarrow{A}$$
 et \overrightarrow{B} est sur le cercle \overrightarrow{C} si et seulement si $2\left(\overrightarrow{MA}, \overrightarrow{MB}\right) = \left(\overrightarrow{OA}, \overrightarrow{OB}\right) [2\pi]$

On se place dans un repère orthonormée de centre O et on note a,b et m, les affixes respectives de A, B et M. On note également $\alpha = \arg a, \ \beta = \arg b$ et $t = \arg m$ et $z = \frac{m-b}{m-a}$.

1. Si $M \in \mathcal{C}$, donner les formes trigonométriques de a, b e tm. En déduire que

$$z = e^{i(\beta - \alpha)/2} \frac{\sin \frac{\beta - t}{2}}{\sin \frac{\alpha - t}{2}}$$

- 2. Montrer le sens direct du théorème de l'angle au centre.
- 3. Réciproquement, on suppose que $2\left(\overrightarrow{MA}, \overrightarrow{MB}\right) = \left(\overrightarrow{OA}, \overrightarrow{OB}\right) [2\pi]$. Ecrire z sous la forme $\rho e^{i\theta}$ avec $(\rho, \theta) \in \mathbb{R}^2$. En déduire une expression de t puis que $M \in \mathcal{C}$.
- 4. Décrire géométriquement l'ensemble $\{M(m) \mid 2\left(\overrightarrow{MA}, \overrightarrow{MB}\right) \leqslant \left(\overrightarrow{OA}, \overrightarrow{OB}\right) [2\pi]\}$
- 5. Pourquoi le résultat peut se démontrer de manière équivalente, dans un autre repère orthonormé (centré ailleurs)?

Exercice 2

On suppose le plan muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

- 1. On considère les points A(5,0), B(-3,4), C(4,-3), D(0,-5).
 - (a) Vérifier que A, B, C, D sont sur un même cercle Γ de centre O dont on précisera le rayon. On note A', B', C' les projetés orthogonaux de D respectivement sur les droites (BC), (AC) et (AB).
 - (b) Déterminer, exclusivement à l'aide du déterminant ou du produit scalaire, une équation cartésienne de la droite (AC) et une équation cartésienne de la normale Δ_B à (AC) passant par D.

En déduire les coordonnées de B'.

- (c) Déterminer les coordonnées de A' et C' et vérifier que A', B', C' sont alignés.
- 2. On considère maintenant S(1,0) et M_1, M_2, M_3 trois points du cercle trigonométrique C(O,1), deux à deux distincts, et distincts de S. On note e^{ia}, e^{ib}, e^{ic} les affixes des points M_1, M_2, M_3 avec a, b, c, réels.

On note H_1, H_2, H_3 (d'affixes h_1, h_2, h_3) les projetés orthogonaux de S sur $(M_2M_3), (M_1M_3), (M_1M_2)$ respectivement.

- (a) Rappeler les expressions du produit scalaire et du déterminant de deux vecteurs \vec{u} et \vec{v} d'affixes respectives z et z'.
- (b) Déterminer un système d'équations caractérisant h_1 faisant intervenir b et c.
- (c) En déduire que $h_1 = \frac{1}{2}(e^{ib} + e^{ic} e^{i(b+c)} + 1)$.
- (d) Montrer que H_1, H_2, H_3 sont alignés.
- $3. \ \, Expliquer \, quelle(s) \, transformation(s) \, g\'{e}om\'{e}trique(s) \, permet \, de \, d\'{e}duire \, de \, la \, question \, pr\'{e}c\'{e}dente, \\ sans \, nouveaux \, calculs, \, le \, r\'{e}sultat \, suivant \, :$
 - Si quatre points deux à deux distincts sont cocycliques alors les projetés orthogonaux de l'un d'eux sur les trois droites formées par les trois autres points sont alignés.

Exercice 3

Soient n et p deux entiers non nuls. Soient $a_1, a_2, \dots a_p, p$ entiers tels que $\sum_{i=1}^p a_i = n$.

Calculer le nombre d'applications de $\{1, 2, \dots n\}$ dans $\{1, 2, \dots p\}$ telles que pour tout $i \in \mathbb{N}_p$, i a exactement a_i antécédents.

Exercice 4

Soit E un ensemble à np éléments $(n, p \in \mathbb{N}^*)$.

On note $P_{n,p}$ le nombre de partitions de E en n parties à p éléments.

Montrer que

$$P_{n,p} = \frac{1}{n} \binom{np}{p} P_{n-1,p}$$

En déduire la valeur de $P_{n,p}$.

Exercice 5

- 1. Soit $(n, p) \in \mathbb{N}^*$ et $S_{n,p}$ le nombre de surjections d'un ensemble à p éléments dans un ensemble à n éléments.
 - (a) On suppose que p < n. Que vaut $S_{p,n}$?
 - (b) Calculer $S_{n+1,n}$ et $S_{p,2}$.
 - (c) Montrer que

$$\forall n, p \in \mathbb{N}^*, \quad n^p = \sum_{i=1}^n \binom{n}{i} S_{p,i}$$

- 2. On note d_n , le nombre de permutations σ de \mathbb{N}_n n'admettant aucun point fixe (on dit que σ est un dérangement de \mathbb{N}_n). Par convention $d_0 = 1$.
 - (a) Exprimer d_1, d_2 .
 - (b) Montrer que

$$\forall n \in \mathbb{N}^*, \quad n! = \sum_{k=0}^n \binom{n}{k} d_{n-k}$$

3. D'une façon ou d'une autre (transformée de Pascal, inversion de matrice, séries génératrices, calcul direct, formule du crible de Poincaré...), donner une expression explicite (sous forme de sommes finies) de $S_{p,n}$ et de d_n .