Calcul - 10 minutes

Exercice

On cherche à calculer, pour tout $x, y \in \mathbb{R}$, et $n \in \mathbb{N}$.

$$S_n(x,y) = \sum_{k=0}^{n} \cos(x + ky)$$

- 1. Donner les valeur de $S_n(x,0)$ et de $S_0(x,y)$
- 2. Exprimer $\cos(x + ky)$ avec $\cos x$, $\sin x$, $\cos ky$ et $\sin ky$
- 3. Ecrire $\sin(\frac{y}{2})\cos(ky)$ sous forme de différence de fonctions trigonométriques. De même pour $\sin(\frac{y}{2})\sin(ky)$.
- 4. En déduire une expression simplifiée de $2\sin(\frac{y}{2}) \times S_n(x,y)$.
- 5. Conclure que, pour $y \neq 0[2\pi]$, $S_n(x,y) = \frac{\sin(x + (n + \frac{1}{2})y) \sin(x \frac{1}{2}y)}{2\sin\frac{y}{2}}$
- 6. Vérifier la formule pour n = 0.

Calcul - 10 minutes

Exercice

On cherche à calculer, pour tout $x, y \in \mathbb{R}$, et $n \in \mathbb{N}$.

$$S_n(x,y) = \sum_{k=0}^{n} \sin(x+ky)$$

- 1. Donner les valeur de $S_n(x,0)$ et de $S_0(x,y)$
- 2. Exprimer $\sin(x + ky)$ avec $\cos x$, $\sin x$, $\cos ky$ et $\sin ky$
- 3. Ecrire $\sin(\frac{y}{2})\cos(ky)$ sous forme de différence de fonctions trigonométriques. De même pour $\sin(\frac{y}{2})\sin(ky)$.
- 4. En déduire une expression simplifiée de $2\sin(\frac{y}{2}) \times S_n(x,y)$.
- 5. Conclure que, pour $y \not\equiv 0[2\pi]$, $S_n(x,y) = \frac{\cos(x \frac{1}{2}y) \cos(x + (n + \frac{1}{2})y)}{2\sin\frac{y}{2}}$
- 6. Vérifier la formule pour n = 0.