Devoir à la maison n°5

La « notation »tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des formules utilisées.

Problème 1

Aucun résultat relatif à l'existence ou aux propriétés des fonctions exponentielles ou logarithmes ne peuvent être utilisé : le but de ce problème est la construction de la fonction exponentielle ex nihilo.

A. Préliminaire

On fixe $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ tel que $x \ge -n$. On définit la fonction

$$\varphi_{x,n}: [-1, +\infty[\to \mathbb{R}, h \mapsto \left(1 + \frac{x+h}{n+1}\right)^{n+1} - (1+h)\left(1 + \frac{x}{n}\right)^n$$

- 1. Étudier les variations de $\varphi_{x,n}$ et en déduire que, pour tout $h \in [-1, +\infty[, \varphi(h) \ge 0.$
- 2. Démontrer que $\left(1+\frac{x}{n}\right)^n \leqslant \left(1+\frac{x}{n+1}\right)^{n+1}$.
- 3. On suppose que $x \in [-n, n[$, montrer que

$$\left(1+\frac{x}{n}\right)^n \leqslant \left(1+\frac{x}{n+1}\right)^{n+1} \leqslant \left(1-\frac{x}{n+1}\right)^{-(n+1)} \leqslant \left(1-\frac{x}{n}\right)^{-n}$$

B. Définition de e(x)

Pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on note $u_n(x) = \left(1 + \frac{x}{n}\right)^n$.

- 1. Montrer qu'il existe $n_0 \in \mathbb{N}^*$ tel que la suite $(u_n(x))_{n \geqslant n_0}$ soit croissante et majorée. En déduire que la suite $(u_n(x))_{n \in \mathbb{N}^*}$ est convergente. On notera désormais $e(x) = \lim_{n \to +\infty} u_n(x)$.
- 2. Montrer que pour tout $x \in \mathbb{R}$, e(x) > 0. Calculer e(0).

C. Dérivabilité de la fonction e

- 1. Démontrer que, pour tout $x \in \mathbb{R}$,
 - $-- \forall h \in [-1, +\infty[, (1+h)e(x) \leqslant e(x+h)]$
 - $\forall h \in]-1,1[,(1-h)e(x+h) \le e(x)$

$$-- \forall h \in]-1,1[, 0 \le e(x+h) - e(x) - he(x) \le \frac{h^2}{1-h}e(x)$$

- 2. En déduire que la fonction e est dérivable, et qu'elle est solution de l'équation différentielle y'-y=0
- 3. Montrer que pour tout $n \in \mathbb{N}$, et pour tout $x \in \mathbb{R}$,

$$\exists c_x \in [x, 0] \text{ ou } [0, x], \quad e(x) = \sum_{k=0}^n \frac{x^k}{k!} + \frac{1}{(n+1)!} x^{n+1} e(c_x)$$

D. Propriétés algébriques de e

- 1. Montrer que, pour tout $(x,y) \in \mathbb{R}^2$, e(-x)e(x+y) = e(y).
- 2. En déduire que la fonction e induit un morphisme du groupe $(\mathbb{R}, +)$ vers le groupe (\mathbb{R}_+^*, \times) .

Problème 2 (*)

On fixe dans cet exercice deux groupes (G,\cdot) et (G',\top) . On considère H un sous-groupe de G et $f:G\to G'$ un morphisme de groupes.

Pour $x \in G$, on note $xH = \{x \cdot h, h \in H\}$ et $Hx = \{h \cdot x, h \in H\}$.

Il arrivera d'écrire ab au lieu de $a \cdot b$

A. Autour du théorème de Lagrange

Pour x et y dans G, on note $x \equiv_H y$ si et seulement si il existe $h \in H$ tel que x = yh.

1. Montrer que \equiv_H est une relation d'équivalence sur G et que l'ensemble des classes d'équivalence est $\mathcal{C}_H = \{xH, x \in G\}$.

On suppose maintenant que G est fini et on note $|G| = \operatorname{card}(G)$, son ordre ou cardinal.

- 2. Montrer que C_H est fini et que $|G| = |H| \times \operatorname{card}(C_H)$. En déduire le théorème de Lagrange : pour tout sous-groupe H de G, |H| divise |G|.
- 3. On suppose ici que $H = \text{Ker } f = \{a \in G \mid f(a) = e'\}$. Montrer que, pour tout $y \in G'$, l'image réciproque $f^{-1}(\{y\})$ est l'ensemble vide ou un élément de \mathcal{C}_H .

En déduire l'égalité :

$$|G| = |\operatorname{Ker} f| \times |\operatorname{Im} f|$$

où Im f = f(G).

B. Sous-groupes distingués

On dit que H est un sous-groupe distingués de G si, pour tout $x \in G$, et tout $h \in H$, $xhx^{-1} \in H$.

- 1. Montrer que H est un sous-groupe distingué de G si et seulement si : $\forall x \in G, xH = Hx$.
- 2. Montrer que Ker f est un sous-groupe distingué de G.
- 3. Donner un exemple de groupe admettant un sous-groupe non distingué (on pourra penser à un groupe de permutations).

C. Groupe quotient

On suppose désormais (jusqu'à la fin du problème) que H est un sous-groupe distingué de G. Si A et B sont deux parties de G, on note $A \star B = \{ab, (a, b) \in A \times B\}$.

- 1. Montrer que, pour tout $(x,y) \in G^2$, $(xH) \star (yH) = (xy)H$.
- 2. En déduire que (C_H, \star) est un groupe.
- 3. On note $\pi: G \to \mathcal{C}_H$ l'application définie par $\pi(x) = xH$. Montrer que π est un morphisme de groupes de (G, \cdot) dans (\mathcal{C}_H, \star) . Préciser son noyau (Ker π) et son image (Im π).

D. Propriété universelle du groupe quotient

- 1. Montrer que, s'il existe un morphisme de groupes $g: \mathcal{C}_H \to G'$ tel que $f = g \circ \pi$, alors $H \subset \operatorname{Ker} f$.
- 2. Réciproquement, on suppose que $H \subset \operatorname{Ker} f$. Montrer qu'il existe un unique morphisme de groupes $g: \mathcal{C}_H \to G'$ tel que $f = g \circ \pi$.
- 3. Avec les hypothèses précédentes, montrer que :
 - g est surjective si et seulement si f est surjectif.
 - g est injective si et seulement si H = Ker f.

On dit que (C_H, \star) est le groupe quotient de (G, \cdot) par le sous-groupe distingué H et on le note en général G/H. Nous avons étudier en cours le groupe $\mathbb{Z}/p\mathbb{Z}$ (p premier). On peut définir le groupe \mathbb{R}/\mathbb{Z} , et montrer qu'il est isomorphe au groupe \mathbb{U} des nombres complexes de module 1...