Épreuve de mathématiques

18 juin 2008 — 2 h 00

Consignes générales aux candidats

- Dès réception du sujet, veuillez vérifier que celui-ci comporte bien le nombre de pages indiqué par l'en-tête. Si vous croyez avoir décelé une erreur :
 - 1. adressez-vous au jury présent dans la salle ;
 - 2. signalez soigneusement sur votre copie l'erreur que vous pensez avoir décelé en précisant les raisons de votre appréciation ;
 - 3. sautez la question, de toute manière vous n'aurez pas le temps de traiter le reste...
- Il vous est interdit de signer ou d'apposer un signe distinctif sur votre composition.
- La qualité de la rédaction sera prise en compte dans la notation. De plus, on veillera à bien respecter la numérotation des questions et à encadrer les résultats.
- Éventuellement, vous pouvez admettre le résultat d'une question précédente pour continuer l'exercice.
- Vous pouvez (et devez), sur l'ensemble du sujet et sauf mention contraire, utiliser les connaissances acquises en MPSI.
- L'utilisation de la calculatrice est autorisée pour cette épreuve.

Veuillez ne pas tourner cette page avant le début de l'épreuve On considère dans tout ce problème :

- K, un corps.
- $\mathbb{K}[X]$ est l'anneau des polynômes à une indéterminée définie sur \mathbb{K} .
- $\mathbb{K}[X,Y,Z]$ est l'anneau des polynômes à trois indéterminées définie sur \mathbb{K} : $P \in \mathbb{K}[X,Y,Z] \Leftrightarrow \exists$ une famille finie $a_{i,j,k} \in \mathbb{K}$ telle que $P(X,Y,Z) = \sum_{i,j,k \in \mathbb{N}} a_{i,j,k} X^i Y^j Z^k$.

On appelle degré du monôme $a_{i,j,k}X^iY^jZ^k$ l'entier i+j+k

On appelle **degré d'un polynôme** P de $\mathbb{K}[X,Y,Z]$, le plus grand degré de ces monômes.

Définition - Polynôme homogène

On dit que $P \in \mathbb{K}[X, Y, Z]$ est un polynôme homogène de degré d,

si chacun de ces monômes est de degré d.

Cette définition s'étend sur $\mathbb{K}[X]$ ou $\mathbb{K}[X,Y]$

A. Préliminaires: plan projectif, polynômes homogènes et cubique

On considère \mathcal{R} la relation suivante définie sur $\mathbb{K}^3 \setminus \{(0,0,0)\}$:

$$(x, y, z)\mathcal{R}(x', y', z')$$
 si et seulement si $\exists t \in \mathbb{K}^*$ tel que $(x, y, z) = t(x', y', z')$

1. Montrer que \mathcal{R} est une relation d'équivalence.

On note alors $\mathbb{P}_2(\mathbb{K})$ l'ensemble des classes d'équivalence pour \mathcal{R} .

L'ensemble $\mathbb{P}_2(\mathbb{K})$ est appelé plan projectif sur \mathbb{K} .

2. Soit $P \in \mathbb{K}[X, Y, Z]$.

Montrer que P homogène de degré d si et seulement si :

$$\forall (x, y, z) \in \mathbb{K}^3, P(tx, ty, tz) = t^d P(x, y, z)$$

3. Considérons maintenant des "points" de la forme (x, y, 0) de $\mathbb{P}_2(\mathbb{K})$.

Montrer qu'on peut leur associer simplement (et bijectivement) des directions de droites de \mathbb{K}^2 . On appelle alors point à l'infini, le point d'intersection des droites ayant toutes une même direction.

4. Pourquoi, selon vous, appelle-t-on ces points, des points à l'infini ? Expliquer alors pourquoi on peut écrire : $\mathbb{P}_2(\mathbb{K}) = \mathbb{K}^2 \cup \{\text{directions de droites de } \mathbb{K}^2\}$

Définition - Droite, cubique et courbe elliptique de $\mathbb{P}_2(\mathbb{K})$

Une **droite** \mathcal{L} **de** $\mathbb{P}_2(\mathbb{K})$ est l'ensemble des points $(x, y, z) \in \mathbb{P}_2(\mathbb{K})$ qui satisfait à une relation : p(x, y, z) = 0 où p est un polynôme homogène de degré 1.

Une cubique C de $\mathbb{P}_2(\mathbb{K})$ est l'ensemble des points $(x, y, z) \in \mathbb{P}_2(\mathbb{K})$ qui satisfait à une relation : p(x, y, z) = 0 où p est un polynôme homogène de degré 3.

Une courbe elliptique \mathcal{E} de $\mathbb{P}_2(\mathbb{K})$ est une classe particulière de cubique de $\mathbb{P}_2(\mathbb{K})$.

On montre qu'il s'agit de l'ensemble des points $(x, y, z) \in \mathbb{P}_2(\mathbb{K})$ qui satisfait à une relation : p(x, y, z) = 0 où $p = X^3 - Y^2Z - a_1XYZ + a_2X^2Z - a_3YZ^2 + a_4XZ^2 + a_6Z^3$. p est un polynôme irréductible sans point singulier.

B. Représentation d'une cubique

L'idée ici est de représenter une courbe elliptique de $\mathbb{P}_2(\mathbb{R})$ sur le plan \mathbb{R}^2 auquel on associe un point. On considère le polynôme $p(X,Y,Z) = X^3 - Y^2Z + XZ^2 + 6Z^3$ et l'on note Γ la représentation sur $\mathbb{P}_2(\mathbb{R})$ de la cubique p(x,y,z) = 0.

- 1. Montrer que Γ admet un unique point de la forme (X, Y, 0) (i.e. point à l'infini) que l'on précisera. Nous noterons ce point \mathcal{O} . A quelle direction de droite de \mathbb{R}^2 ce point est-il rattaché?
- 2. Montrer que pour visualiser Γ de $\mathbb{P}_2(\mathbb{R})$ sur \mathbb{R}^2 , il suffit d'étudier la courbe γ d'équation $y^2 = x^3 + x + 6$, à laquelle on ajoute ce point \mathcal{O} .
- 3. Donner 4 points de γ à coordonnées rationnelles (ou entières).
- 4. Montrer que le polynôme (à une indéterminée) $\Pi = X^3 + X 6$ n'admet qu'une unique racine sur \mathbb{R} . Étudier les variations de Π et représenter schématiquement dans un tableau la courbe d'équation $y = \Pi(x)$.
- 5. Représenter alors sur \mathbb{R}^2 la courbe γ et finalement Γ .

 On pourra commencer par montrer qu'elle présente une symétrie d'axe y=0

C. Loi de groupe pour une courbe elliptique

Nous considérons dans cette partie \mathcal{E} , un courbe elliptique de $\mathbb{P}_2(\mathbb{K})$ définie par un polynôme $p \in \mathbb{K}[X,Y,Z]$, irréductible et sans point singulier, de la forme $p = X^3 - Y^2Z - a_1XYZ + a_2X^2Z - a_3YZ^2 + a_4XZ^2 + a_6Z^3$.

Notons le résultat suivant (démontré en question 4):

Proposition 1

Soit \mathcal{L} , un droite de $\mathbb{P}_2(\mathbb{K})$.

Si \mathcal{E} et \mathcal{L} ont deux points d'intersection (comptés avec leur multiplicité), alors elles ont en réalité trois points d'intersection (comptés avec leur multiplicité).

Définition - Opération * sur $\mathcal E$

- Soit P et $Q \in \mathcal{E}$, avec $P \neq Q$. Notons \mathcal{L} la droite (PQ). Alors il existe un troisième point de \mathcal{L} appartenant \mathcal{E} , nous le notons P * Q
- Soit $P \in \mathcal{E}$. Notons \mathcal{L} la droite tangente à \mathcal{E} en P. Alors il existe un troisième point de \mathcal{L} appartenant \mathcal{E} , nous le notons P * P
 - 1. Montrer que la loi * est commutative.
 - 2. Montrons que \mathcal{O} de coordonnées (0,1,0) appartient à \mathcal{E} . Existe-t-il d'autres points à l'infini dans \mathcal{E} ?
 - 3. Exprimer, pour tout $P \in \mathcal{E}$, le point $\mathcal{O} * P$ en fonction de P.
 - 4. On démontre ici la proposition 1. Considérons $P_1=(x_1,y_1,z_1)$ et $P_2=(x_2,y_2,z_2)\in\mathcal{E}$. Notons \mathcal{L} , la droite (P_1P_2) de $\mathbb{P}_2(\mathbb{R})$ si $P_1\neq P_2$ ou bien la droite tangente à \mathcal{E} en P_1 si $P_1=P_2$. \mathcal{L} a pour équation aX+bY+cZ=0

- (a) Montrer que $\mathcal{L} \cap \mathcal{E}$ est un ensemble fini de $\mathbb{P}_2(\mathbb{K})$
- (b) Montrer que l'on peut supposer que : a = 1 ou b = 1 ou c = 1.

On supposer maintenant que c=1.

Notons q = p(X, Y, -(aX + bY)) où p est le polynôme associé à la courbe elliptique \mathcal{E} .

- (c) Montrer que q est un polynôme homogène de $\mathbb{K}[X,Y]$. Quel est son degré? On note $\widetilde{q}(X) = q(X,1) \in \mathbb{K}[X]$.
- (d) Cas $P_1 \neq P_2$.

Calculer $q(x_1, y_1)$ et $q(x_2, y_2)$. Montrer alors que $\widetilde{q}(\frac{x_1}{y_1}) = \widetilde{q}(\frac{x_2}{y_2}) = 0$.

En déduire que $\widetilde{q} = \left(X - \frac{x_1}{y_1}\right) \left(X - \frac{x_2}{y_2}\right) (\lambda X + \mu)$ et montrer que $q(X,Y) = Y^3 \widetilde{q} \left(\frac{X}{Y}\right)$. En déduire la proposition 1 dans le cas de deux points distincts.

- (e) Expliquer (efficacement) ce qui se passe dans le cas $P_1 = P_2$.
- 5. Comment visualiser sur la représentation graphique Γ (de la partie B) l'opération * en toute généralité et en particulier $\mathcal{O} * P$?

On admet que $(P_1 * P_2) * (Q_1 * Q_2) = (P_1 * Q_1) * (P_2 * Q_2)$

On pourrait le démontrer par un calcul (géométrie cartésienne ou bien en exploitant des théorèmes de géométrie projective (théorème des neuf points), dans tous les cas, cela demande du temps...

Définition - Opération + sur \mathcal{E}

Soit P et $Q \in \mathcal{E}$, alors on note $P + Q = \mathcal{O} * (P * Q)$.

- 6. Montrer la loi + est commutative.
- 7. Montrer que + admet un élément neutre.
- 8. Montrer alors que si $P \in \mathcal{E}$, alors $-P = (\mathcal{O} * \mathcal{O}) * P$ est le symétrique de P selon la loi +
- 9. Montrer que P*(Q+R)=(P+Q)*R puis que la loi + est associative. On pourra utiliser le résultat admis
- 10. Qu'en déduire quant au couple $(\mathcal{E}, +)$
- 11. Calculer (2, -4, 1) + (-3, 6, -1) pour la courbe elliptique définie en B.

Les courbes elliptiques se retrouvent partout en mathématiques modernes : en arithmétique (cryptologie), en géométrie (grand théorème de Poncelet en géométrie projective), en analyse (complexe, forme modulaire, mais là on retrouve à nouveau la théorie des nombres) ... Ce problème n'est qu'un avant-goût de ce jardin des délices.