Devoir à la maison n°4

La notation tiendra particulièrement compte de la qualité de la rédaction, la <u>précision</u> des raisonnements et l'énoncé des formules utilisées.

Exercice 1

On considère les suites réelles $(u_n)_{n\geq 0}$ vérifiant la relation :

- (1) $\forall n \in \mathbb{N}$, $9u_{n+3} 9u_{n+2} 7u_{n+1} + 7u_n = 0$ suite récurrente linéaire d'<u>ordre 3</u>
- 1. Écrire un programme informatique en Python qui demande :
 - la valeur de u_0
 - la valeur de u_1
 - la valeur de u_2
 - la valeur de n
 - et qui calcule le n^{e} terme de la suite vérifiant (1) ayant pour trois premières valeurs celles données précédemment.
- 2. Résoudre alors $9x^3 9x^2 7x + 7 = 0$.
- 3. Déterminer les suites géométriques non nulles vérifiant (1).
- 4. On considère une suite $(u_n)_{n\geqslant 0}$ vérifiant (1).
 - (a) Exprimer en fonction de u_0, u_1, u_2 trois nombres réels α, β, γ tels que :

$$\begin{cases} u_0 = \alpha + & \beta + & \gamma \\ u_1 = \alpha + & \frac{\sqrt{7}}{3} & \beta - & \frac{\sqrt{7}}{3} & \gamma \\ u_2 = \alpha + & \frac{7}{9} & \beta + & \frac{7}{9} & \gamma \end{cases}$$

(On donnera les expressions exactes de α, β, γ).

On associe à la suite $(u_n)_{n\geq 0}$ la suite $(v_n)_{n\geq 0}$ définie par :

$$\forall n \in \mathbb{N}$$
 $v_n = u_n - \alpha - \beta \left(\frac{\sqrt{7}}{3}\right)^n - \gamma \left(-\frac{\sqrt{7}}{3}\right)^n.$

- (b) Établir qu'elle vérifie (1)
- (c) Montrer que $v_0 = v_1 = v_2 = 0$, puis que, pour tout entier $n \ge 0$, $v_n = 0$.
- (d) Exprimer enfin u_n en fonction de n.

Exercice 2

On cherche à démontrer le théorème de Wilson.

- 1. Montrer que si p est un nombre entier qui divise (p-1)! + 1, alors p est premier.
- 2. Réciproquement,
 - (a) Montrer que si p = 2 ou p = 3, alors p divise (p 1)! + 1.
 - (b) On suppose que p est un nombre premier supérieur à 5. Montrer que pour tout $a \in [\![2,p-1]\!]$, il existe un unique entier $b \in [\![2,p-1]\!]$ tel que $a \times b \equiv 1[p]$. Puis montrer que $a \neq b$
 - (c) En déduire que si $p \ge 4$ et p premier, alors p divise (p-1)! + 1.
 - (d) Conclure en donnant le théorème de Wilson que vous venez de prouver.

Problème

On considère la fonction f définie par

$$\begin{cases} \forall x \in \mathbb{R}_+^*, & f(x) = x^2 - x \ln(x) - 1\\ f(0) = -1 \end{cases}$$

ainsi que la fonction φ définies par :

$$\forall x \in \mathbb{R}_+^*, \quad \varphi(x) = \frac{2}{x} + \ln(x)$$

On donne le tableau de valeurs de f:

x =	0,5	1	1, 5	2	2,5	3	3, 5	4
$f(x) \simeq$	-0, 4	0	0, 6	1,6	3	4, 7	6,9	9, 5

A. Étude de f.

Dans cette partie, nous étions la fonction f, en particulier son caractère bijectif.

- 1. Montrer que f est continue sur \mathbb{R}_+ .
- 2. Sur quel intervalle I est dérivable f? Calculer alors pour tout x de I, f'(x).
- 3. Calculer $\lim_{x \to a} f'(x)$. En donner une interprétation graphique.
- 4. Dresser le tableau de variations de f en précisant la limite de f(x) lorsque x tend vers l'infini (on pourra mettre x^2 en facteur).
- 5. Montrer que f réalise une bijection de \mathbb{R}_+ sur un intervalle J que l'on précisera.
- 6. Quel est le sens de variation de f^{-1} ? Déterminer la limite de $f^{-1}(x)$ lorsque x tend vers l'infini.
- 7. Faire une représentation graphique des fonctions f et f^{-1} , sur votre copie.

B. Première suite associée à f.

Nous étudions dans cette partie une suite associée (implicitement) à f.

- 1. Justifier que pour tout entier naturel k, il existe un unique réel x_k positif tel que $f(x_k) = k$.
- 2. Donner la valeur de x_0 .
- 3. Utiliser le tableau de valeurs de f pour déterminer un encadrement de x_1 et x_2 .
- 4. Repérer x_0 , x_1 et x_2 sur l'axe des abscisses de la représentation graphique.
- 5. Exprimer x_k à l'aide de f^{-1} puis justifier que la suite (x_k) est croissante.
- 6. En utilisant la réponse à la question A.6. (sur la limite de f^{-1} en $+\infty$), déduire la limite de (x_k) lorsque k tend vers l'infini.

C. Seconde suite associée à f. On définit la suite (u_n) par : $u_0=\frac{3}{2}$ et $\forall n\in\mathbb{N},\quad u_{n+1}=\varphi(u_n)$

- 1. Montrer que les équations $x = \varphi(x)$ et f(x) = 1 sont équivalentes. En déduire que le réel x_1 est l'unique solution de l'équation $x = \varphi(x)$.
- 2. Étudier les variations de φ sur \mathbb{R}_+^* .
- 3. On donne $\varphi(\frac{3}{2}) \simeq 1,73$ et $\varphi(2) \simeq 1,69$. Montrer que $\varphi\left(\left[\frac{3}{2};2\right]\right) \subset \left[\frac{3}{2};2\right]$.
- 4. Montrer que pour tout entier $n, \frac{3}{2} \leqslant u_n \leqslant 2$
- 5. Notons $\psi : x \mapsto \varphi(x) x_1 + \frac{2}{9}(x x_1)$.

Étudier les variations de ψ (on remarquera que le discriminant rencontré est un carré...). En déduire que ψ est croissante sur $\left|\frac{3}{2};2\right|$.

6. Que vaut $\psi(x_1)$?

En étudiant en deux temps, sur les intervalles $\left[\frac{3}{2}, x_1\right]$ et $\left[x_1, 2\right]$, montrer que :

$$\forall x \in \left[\frac{3}{2}; 2\right], \quad |\varphi(x) - x_1| \leqslant \frac{2}{9}|x - x_1|$$

- 7. En déduire que pour tout entier $n: |u_{n+1} x_1| \le \frac{2}{9} |u_n x_1|$ puis que $|u_n x_1| \le \left(\frac{2}{9}\right)^n$.
- 8. En déduire la limite de la suite (u_n) .