DS 1 de mathématiques – Corrigé

1 Une suite définie par récurrence

1. Soit $n \in \mathbb{N}^*$. On multiplie la relation de récurrence définissant a_n par u_n et on obtient

$$b_n = 2a_n u_n = na_{n-1} u_n + 3n! u_n.$$

Si (u_n) vérifie la condition de l'énoncé, ceci se réécrit en

$$b_n = 2a_{n-1}u_{n-1} + 3n!u_n = b_{n-1} + 3n!u_n.$$

2. On veut que $u_0 = 1$ et, pour tout $n \in \mathbb{N}^*$, $u_n = \frac{2}{n}u_{n-1}$. Ceci détermine (u_n) de façon unique. Par une récurrence immédiate, (u_n) ne s'annule pas et on a :

$$\forall n \in \mathbb{N}, u_n = \prod_{k=1}^n \frac{u_k}{u_{k-1}} = \prod_{k=1}^n \frac{2}{k} = \frac{2^n}{n!},$$

par produit téléscopique. En injectant dans l'égalité obtenue précédemment, on a pour tout $n \in \mathbb{N}^*$, $b_n = b_{n-1} + 3 \times 2^n$. Par somme téléscopique, on en déduit que

$$\forall n \in \mathbb{N}^*, b_n - b_0 = \sum_{k=1}^n (b_k - b_{k-1}) = \sum_{k=1}^n 3 \times 2^k = 6(2^n - 1).$$

Comme $b_0 = a_0 = 5$, on a $b_n = 6(2^n - 1) + 10$, pour tout $n \in \mathbb{N}$.

3. On en déduit que, pour tout $n \in \mathbb{N}$,

$$a_n = \frac{b_n}{2u_n} = \frac{3(2^n - 1) + 5}{2^n} \times n! = \left(3 - \frac{1}{2^{n-1}}\right) \times n!.$$

Redémontrons ce résultat, par récurrence sur n.

• Par hypothèse, $a_0 = 5$ et on a bien $\left(1 - \frac{1}{2^{-1}}\right) \times 0! = 5$.

• Soit
$$n \in \mathbb{N}$$
 tel que $a_n = \left(3 - \frac{1}{2^{n-1}}\right) \times n!$. Alors,

$$a_{n+1} = \frac{n+1}{2} \times a_n + \frac{3(n+1)!}{2}$$

$$= \left(\frac{3}{2} - \frac{1}{2^n}\right) \times (n+1)! + \frac{3(n+1)!}{2}$$

$$a_{n+1} = \left(3 - \frac{1}{2^n}\right) \times (n+1)!$$

L'hérédité est donc établie et l'égalité est montrée pour tout $n \in \mathbb{N}$.

2 Inégalités sur des sommes de $\mathbb R$

1. Pour tout $k \in [1, n]$, on a $b_k = B_k - B_{k-1}$, avec par convention $B_0 = 0$. Donc,

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} a_k (B_k - B_{k-1}) = \sum_{k=1}^{n} a_k B_k - \sum_{\ell=0}^{n-1} a_{\ell+1} B_{\ell} = a_n B_n - a_1 B_0 + \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k.$$

Comme $B_0 = 0$, ceci conclut.

2. Pour tout $k \in [1, n]$, on a $m \leq B_k \leq M$. Comme a_n et les $a_k - a_{k+1}$ sont positifs, on déduit de l'égalité précédente que :

$$a_n m + \sum_{k=1}^{n-1} (a_k - a_{k+1}) m \le \sum_{k=1}^n a_k b_k \le a_n M + \sum_{k=1}^{n-1} (a_k - a_{k+1}) M.$$

Par téléscopage, le membre de gauche vaut a_1m et celui de droite a_1M , d'où la conclusion.

3. Notons M_a la quantité $\max_{1 \le k \le n} |b_1 + \dots + b_k|$. Pour tout k, on a $b_1 + \dots + b_k \le |b_1 + \dots + b_k| \le M_a$. Comme c'est vrai pour tout k, on en déduit que $M \le M_a$. Par ailleurs, pour tout k, on a $-(b_1 + \dots + b_k) \le M_a$. Et donc, $-m = \max_{1 \le k \le n} \{-(b_1 + \dots + b_k)\} \le M_a$. Ainsi, $m \ge -M_a$.

Avec les inégalités précédentes, on a donc : $-a_1 \times M_a \leq \sum_{k=1}^n a_k b_k \leq a_1 \times M_a$. Donc,

$$\left|\sum_{k=1}^{n} a_k b_k\right| \leq M_a$$
, ce qu'il fallait démontrer.

4. On réécrit la question 1, comme :

$$\sum_{k=1}^{n} a_k b_k = n a_n \times \frac{B_n}{n} + \sum_{k=1}^{n-1} k(a_k - a_{k+1}) \frac{B_k}{k}.$$

Pour tout k, on a l'encadrement $m' \leq \frac{B_k}{k} \leq M'$. De plus, les $a_k - a_{k+1}$ et a_n sont positifs. On en déduit l'encadrement :

$$na_n \times m' + \sum_{k=1}^{n-1} k(a_k - a_{k+1})m' \le \sum_{k=1}^n a_k b_k \le na_n \times M' + \sum_{k=1}^n k(a_k - a_{k+1})M'.$$

Or,
$$\sum_{k=1}^{n-1} k(a_k - a_{k+1}) = \sum_{k=1}^{n-1} ka_k - \sum_{k=2}^{n} (k-1)a_k = a_1 - (n-1)a_n + \sum_{k=2}^{n-1} a_k = \sum_{k=1}^{n} a_k - na_n$$
. D'où l'encadrement annoncé.

3 Une caractérisation des intervalles

1. Préliminaires.

- (a) On note $B = [0,1] \cup \{2\}$. Alors, $[0,1] \subset B$, donc B vérifie ii). Mais 1 et 2 sont dans B tandis que $\frac{1+2}{2} = \frac{3}{2}$ n'y est pas, donc B ne vérifie pas i).
- (b) On considère $C = \mathbb{Q}$. D'une part, C vérifie i) car la moyenne de deux rationnels est un rationnel. D'autre part, C ne vérifie pas ii) : en effet, si C contenait un intervalle [a,b] avec a < b, cet intervalle ne contiendrait aucun irrationnel, ce qui contredirait la densité de $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R} .
- (c) Soient $x, y \in I$. Alors, u < x, y < v. Donc, $\frac{x+y}{2} < \frac{v+v}{2} = v$ et de même $\frac{x+y}{2} > u$. Donc, $\frac{x+y}{2} \in I$; donc I vérifie i). Comme I contient par exemple le segment $[\frac{2u+v}{3}, \frac{u+2v}{3}]$, I vérifie aussi ii).
- 2. (a) Soit $u \in \mathbb{R}$ tel que $b \le u \le \frac{b+x}{2}$. Alors, u est le milieu du segment d'extrémités x et u-(x-u)=2u-x. Comme $u \le \frac{b+x}{2}$, $2u-x \le b$. De plus, x vérifie par hypothèse $x-b \le b-a$ donc $x \le 2b-a$, donc $-x \ge a-2b$. Dès lors, $2u-x \ge 2u+a-2b \ge a$. Ainsi, $2u-x \in [a,b]$. Donc, 2u-x et x sont tous deux dans A, donc leur milieu u aussi. On a montré l'inclusion souhaitée.
 - (b) On a $\frac{b_n + x}{2} = \frac{b + 2(2^n 1)x + x}{2^{n+1}} = \frac{b + (2^{n+1} 1)x}{2^{n+1}} = b_{n+1}$. On montre que pour tout $n \in \mathbb{N}$, $[b_n, b_{n+1}] \subset A$ par récurrence forte sur n:
 - Pour n = 0, il s'agit de la question précédente.
 - Soit $n \in \mathbb{N}$ tel que pour tout $k \leq n$, $[b_k, b_{k+1}] \subset A$. Alors A contient [a, b] et l'union de tous les $[b_k, b_{k+1}]$, pour $k \in [0, n]$, donc $[a, b_{n+1}] \subset A$. Comme $b_{n+1} > b$ et que $x b \leq b a$, on a aussi $x b_{n+1} \leq b_{n+1} a$. On peut donc appliquer la question précédente en remplaçant b par b_{n+1} . Comme $b_{n+2} = \frac{b_{n+1} + x}{2}$, on en déduit que $[b_{n+1}, b_{n+2}] \subset A$.
 - (c) La suite (b_n) est strictement croissante et de limite x. De plus, $b_0 = b$. On en déduit que tout élément $y \in [b, x[$ est dans (exactement) un $[b_n, b_{n+1}]$ pour un $n \in \mathbb{N}$. Par la question précédente, $[b, x[\subset A.$ Comme par hypothèse $x \in A$, $[b, x] \subset A$.
- 3. (a) Comme précédemment, x_{n+1} est le milieu du segment d'extrémités b et x_n . De plus, $x_0 = x$. Par une récurrence immédiate, on a $x_n \in A$ pour tout $n \in \mathbb{N}$. De plus, si $n \in \mathbb{N}$, $x_n x_{n+1} = x_{n+1} b \le x_{n+1} a$ car a < b.
 - (b) Comme (x_n) tend vers b, on a $\lim_{n}(x_n b) = 0 < b a$. En particulier, il existe un rang n_0 tel que $x_{n_0} b \le b a$.

- (c) On procède par récurrence descendante sur $n \in [0, n_0]$.
 - Par la question précédente et la question 2.a), on a $[b, x_{n_0}] \subset A$.
 - Soit $n \in [1, n_0]$ tel que $[b, x_n] \subset A$. Alors, on a aussi $[a, x_n] \subset A$. Comme $x_{n-1} x_n \leq x_n a$, on a $[x_n, x_{n-1}] \subset A$ par la question 2.c). Et donc aussi $[b, x_{n-1}] \subset A$., ce qui conclut l'hérédité.
- 4. Soient $x < y \in A$. On doit montrer que $[x, y] \subset A$. On distingue différents cas :
 - Si $x \leq y \leq a$, alors $[x, a] \subset A$ par ce qui précède. En particulier, $[x, y] \subset A$.
 - Si $x \le a \le y \le b$, alors $[x, a] \subset A$ et donc aussi $[x, y] \subset A$ car $[a, y] \subset [a, b]$.
 - Si $x \le a \le b \le y$, on a $[x, a] \subset A$, $[a, b] \subset A$ et $[b, y] \subset A$ donc $[x, y] \subset A$.
 - Les autres cas sont analogues.

Ainsi, A est une partie convexe de \mathbb{R} . Donc, A est un intervalle de \mathbb{R} .

Remarque. Cette dernière question est assez artificielle. Il est plus naturel de démontrer directement que A est un intervalle en imitant la preuve du cours de la caractérisations intervalles = convexes, plutôt que de passer par la convexité.

4 e^r est irrationnel si $r \in \mathbb{Q} \setminus \{0\}$

1. Préliminaires.

- (a) Supposons i). Soit $x \in \mathbb{R}_+^* \setminus \{1\}$ tel que $\ln x \in \mathbb{Q}$. Comme $\ln x \in \mathbb{Q}^*$, on a $x = e^{\ln x} \notin \mathbb{Q}$, d'après i). Par contraposée, on en déduit que si $x \in \mathbb{Q}_+^* \setminus \{1\}$, alors $\ln x \notin \mathbb{Q}$. Supposons ii). Soit $r \in \mathbb{R}^*$ tel que $e^r \in \mathbb{Q}$. Alors, $e^r \in \mathbb{Q}^* \setminus \{1\}$ et donc $r = \ln(e^r) \notin \mathbb{Q}$. On conclut de nouveau par contraposée que si $r \in \mathbb{Q}^*$, alors $e^r \notin \mathbb{Q}$.
- (b) La fonction u_n est polynomiale donc dérivable sur \mathbb{R}_+ . Pour tout $x \in \mathbb{R}_+$, $u'_n(x) = \sum_{k=1}^{n-1} \frac{kx^{k-1}}{k!} = \sum_{k=1}^{n-1} \frac{x^{k-1}}{(k-1)!} = u_{n-1}(x)$, après changement de variable.
- (c) La fonction f_n est dérivable sur \mathbb{R}_+ , de dérivée $x \mapsto -e^{-x}(u_n(x) u_{n-1}(x)) = -e^{-x}\frac{x^n}{n!}$. Comme f'_n est strictement négative sur \mathbb{R}_+^* , f_n est strictement décroissante sur \mathbb{R}_+ ; de plus $f_n(0) = 1$, donc $\forall x \in \mathbb{R}_+^*$, $f_n(x) < 1$. En multipliant de part et d'autre par e^x , on obtient la première inégalité (pour tout $x \in \mathbb{R}_+^*$).

La fonction g_n est dérivable sur \mathbb{R}_+ de dérivée $x \mapsto -e^{-x} \left(u_n(x) + \frac{x^n}{n!} - u_{n-1}(x) - \frac{x^{n-1}}{(n-1)!} \right)$.

On a donc $g'_n(x) = -e^{-x} \frac{x^{n-1}}{(n-1)!} \left(\frac{2x}{n} - 1\right)$. Donc, g_n est strictement croissante sur l'intervalle [0, n/2]. Comme $g_n(0) = 1$, on a $\forall x \in]0, n/2], g_n(x) > 1$. En

multipliant de part et d'autre par e^x , on obtient la deuxième inégalité (pour tout $x \in]0, n/2])$

(d) Soit $n \ge 2$. En prenant x = 1 dans les inégalités précédentes, on a donc :

$$\forall n \ge 2, \sum_{k=0}^{n} \frac{1}{k!} < e < \sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{k!}.$$

Pour tout $k \leq n$, $\frac{n!}{k!}$ est entier. En notant $a_n = \sum_{k=0}^n \frac{n!}{k!}$, on a donc $a_n \in \mathbb{N}$ et $a_n < n!e < a_n + 1$.

- (e) Supposons par l'absurde que $e=\frac{p}{q}$, avec $p,q\in\mathbb{N}^*$. L'inégalité précédente pour n=q donne donc $a_q< q!e< a_q+1$. Or $q!e\in\mathbb{N}$. C'est donc un entier naturel strictement compris entre deux entiers naturels successifs ; d'où la contradiction recherchée.
- 2. On a $I_0(x) = \int_{-x}^x e^t dt = e^x e^{-x}$. Pour $J_0(x)$, on fait une intégration par parties :

$$J_0(x) = \int_{-x}^{x} te^t dt = xe^x - (-xe^{-x}) - \int_{-x}^{x} e^t dt = (x-1)e^x + (x+1)e^{-x}.$$

3. On intègre par parties dans $I_n(x)$ en dérivant $t \mapsto (x^2 - t^2)^n$ et en intégrant $t \mapsto e^t$. On a donc :

$$n!I_n(x) = (x^2 - x^2)^n e^x - (x^2 - (-x)^2)^n e^{-x} + \int_{-x}^x 2nt(x^2 - t^2)^{n-1} e^t dt = 2n(n-1)!J_{n-1}(x).$$

D'où $I_n(x) = 2J_{n-1}(x)$.

4. On fait une intégration par parties dans $J_n(x)$ en dérivant $f: t \mapsto t(x^2 - t^2)^n$ et en intégrant $t \mapsto e^t$. On a $f'(t) = (x^2 - t^2)^n - 2nt^2(x^2 - t^2)^{n-1}$. Donc,

$$n!J_n(x) = x(x^2 - x^2)^n e^x - (-x)(x^2 - (-x)^2)^n e^{-x} - \int_{-x}^x (x^2 - t^2)^n e^t dt + 2n \int_{-x}^x t^2 (x^2 - t^2)^{n-1} e^t dt.$$

Dans l'intégrale de droite, on écrit $t^2 = -(x^2 - t^2) + x^2$. Ainsi,

$$n!J_n(x) = -n!I_n(x) - 2n \times n!I_n(x) + 2nx^2(n-1)!I_{n-1}(x).$$

Après simplification par n!, on a bien $J_n(x) = -(2n+1)I_n(x) + 2x^2I_{n-1}(x)$.

- 5. On le montre par récurrence double sur $n \in \mathbb{N}$.
 - Pour n = 0, cela résulte de la question 2 : on peut poser $A_0 = 1$ et $B_0 = -1$. Pour n = 1, on a $I_1(x) = 2J_0(x)$; donc $A_1 = 2(X - 1)$ et $B_1 = 2(X + 1)$ conviennent.

• Soit $n \ge 2$. On suppose le résultat établi aux rangs n-1 et n-2. Pour tout x > 0, on a

$$I_n(x) = 2J_{n-1}(x) = -2(2n-1)I_{n-1}(x) + 2x^2I_{n-2}(x).$$

Avec les notations de l'énoncé, on peut donc écrire :

$$I_n(x) = -2(2n-1)\left(A_{n-1}(x)e^x + B_{n-1}(x)e^{-x}\right) + 2x^2\left(A_{n-2}(x)e^x + B_{n-2}(x)e^{-x}\right).$$

En posant $A_n = 2X^2A_{n-2} - 2(2n-1)A_{n-1}$ et $B_n = 2X^2B_{n-2} - 2(2n-1)B_{n-1}$, on a l'expression souhaitée. De plus, A_n et B_n sont à coefficients car A_{n-1} , A_{n-2} , B_{n-1} et B_{n-2} le sont et les degrés de A_n et B_n sont au maximum ceux de n-2 plus 2, c'est-à-dire n.

6. $I_n(x)$ est l'intégrale sur le segment [-x,x] non trivial d'une fonction strictement positive, donc $I_n(x) > 0$. De plus, pour $t \in [-x,x], (x^2 - t^2) \le x^2$. Donc, $(x^2 - t^2)^n e^t \le x^{2n} e^t$. Par propriété de croissance de l'intégrale, on en déduit que $I_n(x) \le \frac{x^{2n}}{n!} \int_{-x}^{x} e^t dt$.

Par théorème d'encadrement, on veut alors montrer que pour un x fixé, $\lim_{n} \frac{x^{2n}}{n!} = 0$.

Or,
$$\frac{x^{2n}}{n!} = \prod_{k=1}^{n} \frac{x^2}{k}$$
. Si k est plus grand qu'un certain indice $n_0 \in \mathbb{N}$, on a $\frac{x^2}{k} \leq \frac{1}{2}$.

Alors, si $n \ge n_0$, $\frac{x^{2n}}{n!} \le \prod_{k=1}^{n_0-1} \frac{x^2}{k} \times \left(\frac{1}{2}\right)^{n-n_0}$. On a majoré $\frac{x^{2n}}{n!}$ par une suite tendant

vers 0, donc cette suite tend aussi vers 0, donc $(I_n(x))$ aussi.

7. D'après la question 5., $I_n(r) = A_n(r)e^r + B_n(r)e^{-r}$, où A_n et B_n sont des polynômes à coefficients entiers de degré $\leq n$. Comme $e^r = \frac{p}{q}$, on en déduit :

$$pqI_n(r) = A_n(r)p^2 + B_n(r)q^2.$$

Comme A_n et B_n sont à coefficients entiers et que r est un entier, le membre de droite est un entier. Donc, pour tout $n \in \mathbb{N}$, $pqI_n(r) \in \mathbb{N}$.

8. Par ailleurs, d'après la question précédente, $I_n(r)$ est strictement positif et tend vers 0 quand $n \to +\infty$, donc $pqI_n(r)$ aussi. On a donc une suite d'entiers strictement positifs tendant vers 0, ce qui est absurde.

On en déduit que pour tout $r \in \mathbb{N}^*$, $e^r \notin \mathbb{Q}$. Considérons maintenant $\frac{p}{q}$ un rationnel

strictement positif; si on avait $e^{\frac{p}{q}}$ rationnel, alors $e^p = \left(e^{\frac{p}{q}}\right)^q$, serait aussi rationnel, ce qui n'est pas. Donc, e^r est irrationnel pour tout rationnel r > 0. Enfin, si r < 0 est un rationnel, on a $e^{-r} = \frac{1}{e^r}$, de sorte que e^{-r} est aussi irrationnel. Ceci conclut.