Suites récurrentes

5. $u_{n+1} = \sqrt{2 - u_n} (u_0 \in [0, 2])$

7. $u_{n+1} = \ln(1 + 2u_n)$, où $u_0 > 1$

1 Généralités

EXERCICE 1. • O Étude générale

Étudier la convergence des suites récurrentes suivantes :

1.
$$u_{n+1} = \frac{2 + u_n^2}{3}$$

2.
$$u_{n+1} = e^{-u_n}$$
 6. $u_{n+1} = \frac{3}{2 + u_n^2}$

3.
$$u_{n+1} = \sin u_n$$

4.
$$u_{n+1} = (1 - u_n)^2$$
, où $u_0 \in [0, 1]$ 8. $u_{n+1} = \sqrt{u_n^2 + u_n} \ (u_0 > 0)$

EXERCICE 2. 4 – •• Produit de racines itérées

Soit $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{\frac{u_n + 1}{2}}$. Étudier la suite de terme général $v_n = \prod_{k=1}^n u_k$.

EXERCICE 3. ♣ – ●●○ Suite logistique, cas limite

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=4u_n(1-u_n)$.

- 1. Montrer que si $u_0 \notin [0,1]$, alors $u_n \to -\infty$.
- 2. On suppose que $u_0 \in [0,1]$ et on considère $\theta \in \mathbb{R}$ tel que $u_0 = \sin^2 \theta$. Exprimer, pour tout $n \in \mathbb{N}$, u_n sous la forme $\sin \theta_n$. En déduire l'ensemble des valeurs u_0 pour lesquelles (u_n) converge.
- 3. Montrer que l'ensemble des valeurs de u_0 pour lesquelles (u_n) est périodique est dense dans [0,1].

EXERCICE 4. ♣/♦ – ●●○ Moyenne de Cesàro d'une suite récurrente

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue, soit $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$. On suppose que la suite de terme général

$$v_n = \frac{u_0 + \dots + u_n}{n+1}$$

est bornée. Montrer que *f* admet un point fixe.

2 Asymptotique

EXERCICE 5. \clubsuit – $\bullet \bullet \bigcirc$ *Différentes méthodes pour l'obtention d'un équivalent* On considère une suite $(u_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $\forall n \in \mathbb{N}, u_{n+1} = u_n - 3u_n^2$.

1. Montrer que, si $u_0 \in \left[0, \frac{1}{3}\right]$, alors u est à valeurs strictement positives et tend vers 0.

On suppose dans la suite de l'exercice que $u_0 \in \left]0, \frac{1}{3}\right[$.

- 2. Équivalent conjectural.
 - (a) Pour tous λ , $\alpha \in \mathbb{R}$, on note $(\nu_n)_{n \in \mathbb{N}^*} = (\lambda n^{\alpha})_{n \in \mathbb{N}^*}$. Donner un équivalent de $(\nu_{n+1} - \nu_n)_{n \in \mathbb{N}^*}$ et de $(-3\nu_n^2)_{n \in \mathbb{N}^*}$.
 - (b) Résoudre (à la physicienne) l'équation différentielle $y' + 3y^2 = 0$.
 - (c) Utiliser l'une ou l'autre des questions précédentes pour conjecturer un équivalent de (u_n) .
- 3. Équivalent, par comparaison à une intégrale.
 - (a) Montrer que $\int_{u_{n+1}}^{u_n} \frac{dt}{t^2}$ converge vers 3 quand $n \to +\infty$.
 - (b) En utilisant le théorème de Cesàro, donner un équivalent de $\left(\int_{u_n}^{u_0} \frac{dt}{t^2}\right)_{n \in \mathbb{N}}$ et en déduire un équivalent de (u_n) .
- 4. Développement asymptotique, via une suite auxiliaire.

On définit $(w_n)_{n \in \mathbb{N}} = \left(\frac{1}{3u_n}\right)_{n \in \mathbb{N}}$.

- (a) Montrer $\lim_{n\to+\infty} (w_{n+1}-w_n)=1$ et en déduire à nouveau un équivalent de u.
- (b) Montrer $(w_{n+1} (n+1)) (w_n n) \sim \frac{1}{n}$.

Les deux questions suivantes demandent davantage de connaissances.

- (c) Montrer que $w_n n \sim \ln n$.
- (d) En déduire un développement asymptotique à deux termes de (u_n) .

EXERCICE 6. $\bullet \bullet \bullet$ *Équivalent de* $u_{n+1} = \sin(u_n)$

Soient c > 0 et $f : [0, c] \rightarrow [0, c]$ une fonction continue admettant en 0 un développement asymptotique de la forme

$$f(x) = x - ax^{\alpha} + o(x^{\alpha}),$$

où a > 0 et $\alpha > 1$.

1. Montrer que si u_0 est assez petit, la suite (u_n) définie par $u_{n+1} = f(u_n)$ converge vers 0.

2

On suppose cette condition satisfaite dans la suite.

- 2. Déterminer $\beta \in \mathbb{R}^*$ tel que la suite $(u_{n+1}^{\beta} u_n^{\beta})$ ait une limite finie non nulle.
- 3. En déduire un équivalent de (u_n) .
- 4. Appliquer à une suite récurrente $u_{n+1} = \sin(u_n)$.

EXERCICE 7. ••• Équivalents de suites récurrentes

Donner la limite et un équivalent des suites suivantes, définies par récurrence :

1.
$$u_{n+1} = u_n + \frac{1}{u_n} (u_0 > 0)$$

3.
$$u_{n+1} = u_n e^{-u_n} (u_0 > 0)$$

2.
$$u_{n+1} = \frac{u_n}{1 + u_n^2} (u_0 > 0)$$

4.
$$u_{n+1} = u_n + \frac{1}{\ln u_n} (u_0 > 1)$$

EXERCICE 8. 4. $- \bullet \bullet \bullet \bullet u_{n+1} = \sqrt{u_n + n^2}$

Soit $(u_n)_{n\in\mathbb{N}}$ telle que $u_0=0$ et $\forall n\in\mathbb{N}, u_{n+1}=\sqrt{u_n+n^2}$.

- 1. Montrer que $u_n = n + O(1)$.
- 2. En déduire que $u_{n+1} = n + \frac{1}{2} + o(1)$ et donner un développement asymptotique de u à la précision o(1).
- 3. Obtenir un développement asymptotique de u à la précision $o\left(\frac{1}{n}\right)$.

EXERCICE 9. \clubsuit – $\bullet \bullet \bullet$ Développement asymptotique d'une suite récurrente

Donner un développement asymptotique à deux termes d'une suite définie par récurrence par $\forall n \in \mathbb{N}, u_{n+1} = u_n + e^{-u_n}$.

Indications

Exercice 4. Si f n'a pas de point fixe, quelle propriété a la suite (u_n) ?