DM 15 - Séries

1 Exercice – Deux études de série

- 1. Déterminer selon la valeur de $\alpha \in \mathbb{R}$ la nature de la série $\sum_{n \geq 1} (-1)^n \frac{\sqrt{n+1} \sqrt{n-1}}{n^{\alpha}}$.
- 2. On cherche à déterminer la nature la série $\sum \sin(n!e\pi)$. On admet que $e = \sum_{n=0}^{+\infty} \frac{1}{n!}$ et on note, pour tout $p \in \mathbb{N}$, $R_p = \sum_{n=p}^{+\infty} \frac{1}{n!}$.
 - (a) Montrer que $R_p = O\left(\frac{1}{p!}\right)$ quand $p \to +\infty$.
 - (b) En déduire que $p!R_p = 1 + \frac{1}{p} + O\left(\frac{1}{p^2}\right)$.

 On pourra écrire une relation simple entre R_p et R_{p+2} .
 - (c) Montrer que pour tout $n \ge 2$, $\sin(n!e\pi) = (-1)^n \sin(n!R_n\pi)$.
 - (d) En déduire un développement asymptotique à la précision $O\left(\frac{1}{n^2}\right)$ de $\sin(n!e\pi)$.
 - (e) Conclure quant à la nature de la série $\sum \sin(n!e\pi)$.

2 Problème – Un résultat sur les séries numériques

Soit $(a_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles. L'objectif du problème est de montrer l'équivalence entre les deux assertions suivantes :

- i) Pour toute suite $(u_n)_{n\in\mathbb{N}}$ à valeurs réelles, si $\sum u_n$ converge, alors $\sum a_n u_n$ converge.
- ii) La série $\sum |a_{n+1} a_n|$ converge.

Les sections 1.1 et 1.2 présentent des outils classiques sur les séries numériques ; certains des résultats qui y sont démontrés pourront être utilisés dans la section 1.3.

2.1 Transformation d'Abel

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres (réels ou complexes).

- 1. Pour tout $n \in \mathbb{N}$, on note $V_n = \sum_{k=0}^n v_k$. Montrer que $\forall n \in \mathbb{N}$, $\sum_{k=0}^n u_k v_k = u_n V_n \sum_{k=0}^{n-1} V_k (u_{k+1} u_k)$.
- 2. En déduire le critère d'Abel:
 - Si (u_n) est une suite de réels positifs, décroissante et de limite nulle ; et si $(V_n)_{n\in\mathbb{N}}$ est bornée, alors la série $\sum u_n v_n$ est convergente.
- 3. **Une application :** soient $\alpha > 0$ et $\theta \in \mathbb{R}$. Discuter la nature de la série $\sum_{n \ge 1} \frac{e^{in\theta}}{n^{\alpha}}$.

2.2 Séries $\sum \frac{u_n}{S_n^{\alpha}}$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. Pour tout $n\in\mathbb{N}$, on note $S_n=\sum_{k=0}^n u_k$. On suppose $\sum u_n$ divergente. On souhaite montrer que la série $\sum \frac{u_n}{S_n^\alpha}$ converge ssi $\alpha>1$.

- 4. Soit $\alpha > 1$.
 - a) Montrer que $\forall n \ge 1, \frac{u_n}{S_n^{\alpha}} \le \int_{S_{n-1}}^{S_n} \frac{dt}{t^{\alpha}}.$
 - b) En déduire que $\sum \frac{u_n}{S_n^{\alpha}}$ converge.
- 5. Soit $\alpha \in [0,1[$. Montrer que $\sum \frac{u_n}{S_n^{\alpha}}$ diverge.
- 6. On considère le cas limite $\alpha = 1$.
 - a) Soit $(a_n)_{n\in\mathbb{N}}$ une série de nombres. Montrer que 1 , si $\sum a_n$ est convergente, alors

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall (p,q) \in \mathbb{N}^2, q > p \ge N \implies \Big| \sum_{n=p}^q a_n \Big| \le \varepsilon.$$

- b) Soit $N \in \mathbb{N}$. Montrer que si p est assez grand, alors $\sum_{n=N}^{N+p} \frac{u_n}{S_n} \ge \frac{1}{2}$.
- c) En déduire la divergence de $\sum \frac{u_n}{S_n}$.
- 7. **Une application :** soit $\beta > 0$. Déterminer la nature de la série $\sum \frac{1}{n \ln^{\beta} n}$, selon la valeur de β .

2.3 Démonstration de l'équivalence

Soit (a_n) une suite à valeurs réelles.

8. Montrer l'implication ii) $\implies i$).

On suppose désormais que (a_n) vérifie (i): Pour toute suite (u_n) à valeurs réelles telle que $\sum u_n$ est convergente, $\sum a_n u_n$ est convergente.

- 9. Montrer que la suite (a_n) est bornée.
- 10. Soit (ε_n) une suite à valeurs réelles de limite nulle.
 - a) Montrer que la série $\sum \varepsilon_n (a_{n+1} a_n)$ converge.
 - b) Montrer que la série $\sum \varepsilon_n |a_{n+1} a_n|$ converge.
- 11. En déduire que (a_n) vérifie ii).

¹C'est le *critère de Cauchy* ; il s'agit en fait d'une équivalence.