2 Matrices et espaces symplectiques

Soit $n \in \mathbb{N}^*$. On sera amené dans le problème à manipuler des matrices $M \in \mathcal{M}_{2n}(\mathbb{R})$, souvent écrites par blocs

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

où $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$. On note I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$, I_{2n} la matrice identité de $\mathcal{M}_{2n}(\mathbb{R})$ et $J \in \mathcal{M}_{2n}(\mathbb{R})$ la matrice

$$J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}.$$

2.1 Le groupe symplectique Sp_{2n}

On note $\operatorname{Sp}_{2n} = \{ M \in \mathcal{M}_{2n}(\mathbb{R}) \mid M^T J M = J \}.$

- 1. Calculer J^2 et J^T . En déduire que J est inversible et exprimer son inverse.
- 2. Déterminer $\det J$.
- 3. Montrer que $J \in \operatorname{Sp}_{2n}$.
- 4. Montrer que si $M \in \operatorname{Sp}_{2n}$, alors det $M = \pm 1$.

On montrera dans la suite qu'on a en fait toujours $\det M = 1$.

5. Montrer que Sp_{2n} est un sous-groupe de $\mathrm{GL}_{2n}(\mathbb{R})$ et qu'il est stable par transposition.

Pour tout
$$\alpha \in \mathbb{R}$$
, on note $K(\alpha)$ la matrice de $\mathcal{M}_{2n}(\mathbb{R})$ définie par $K(\alpha) = \begin{pmatrix} I_n & 0 \\ -\alpha I_n & I_n \end{pmatrix}$.
Pour tout $U \in GL_n(\mathbb{R})$, on note L_U la matrice de $\mathcal{M}_{2n}(\mathbb{R})$ définie par $L_U = \begin{pmatrix} U & 0 \\ 0 & (U^{-1})^T \end{pmatrix}$.

6. Montrer que, pour tout α dans $\in \mathbb{R}$ et pour tout $U \in GL_n(\mathbb{R})$, les matrices $K(\alpha)$ et L_U sont dans Sp_{2n} .

2.2 Centre de Sp_{2n}

On note \mathcal{Z} le *centre* de Sp_{2n} , défini par

$$\mathcal{Z} = \{ M \in \operatorname{Sp}_{2n} \mid \forall N \in \operatorname{Sp}_{2n}, MN = NM \}.$$

2

Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ une matrice dans \mathcal{Z} .

7. En utilisant des matrices bien choisies de $\mathrm{Sp}_{2n},$ montrer que

- a) B = C = 0 et A = D.
- b) Pour tout $U \in GL_n(\mathbb{R})$, A commute avec U.
- 8. Soit N une matrice de $\mathcal{M}_n(\mathbb{R})$, qui commute avec toute matrice de $\mathrm{GL}_n(\mathbb{R})$. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $N = \lambda I_n$.

On pourra utiliser des matrices d'opérations élémentaires.

9. Déterminer \mathcal{Z} .

2.3 Déterminant d'une matrice de Sp_{2n}

Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ dans Sp_{2n} . On souhaite montrer que $\det M = 1$.

- 10. Montrer que A^TC et B^TD sont symétriques et que $C^TB A^TD = -I_n$.
- 11. Dans cette question seulement, on suppose D inversible.
 - a) Montrer qu'il existe $U, V, W, Q \in \mathcal{M}_n(\mathbb{R})$ telles que $M = \begin{pmatrix} I_n & Q \\ 0 & I_n \end{pmatrix} \begin{pmatrix} U & 0 \\ V & W \end{pmatrix}$.
 - b) En déduire que $\det M = \det(D^T A B^T C) = 1$.
- 12. Si $X, Y \in \mathbb{R}^n$ qu'on identifie à $\mathcal{M}_{n,1}(\mathbb{R})$ on note $\langle X, Y \rangle = X^T Y \in \mathbb{R}$ leur produit scalaire. On admet qu'on définit ainsi une forme bilinéaire sur \mathbb{R}^n .
 - a) Montrer que, pour toute $M \in \mathcal{M}_n(\mathbb{R})$ et pour tous $X, Y \in \mathbb{R}^n$,

$$\langle MX, Y \rangle = \langle X, M^T Y \rangle.$$

- b) Montrer que si $X_1, \ldots, X_p \in \mathbb{R}^n \{0\}$ vérifient $\forall i \neq j \in [1, p], \langle X_i, X_j \rangle = 0$, alors la famille (X_1, \ldots, X_p) est libre.
- c) Soient α, β deux réels distincts, soient $X, Y \in \mathbb{R}^n$ tels que $X \in \text{Ker}(D + \alpha B)$ et $Y \in \text{Ker}(D + \beta B)$. Montrer que $\langle DX, DY \rangle = 0$.
- 13. Montrer que $\operatorname{Ker} B \cap \operatorname{Ker} D = \{0\}.$
- 14. Soient $\alpha_1, \ldots, \alpha_p$ des réels non nuls deux à deux distincts et X_1, \ldots, X_p tels que, pour tout $i \in [1, p], X_i \in \text{Ker}(D + \alpha_i B) \{0\}$. Montrer que les DX_i sont non nuls, puis que la famille (DX_1, \ldots, DX_p) est libre.
- 15. En déduire qu'il existe $\alpha \in \mathbb{R}$ tel que $D + \alpha B$ est inversible.
- 16. En déduire que $\det M = 1$.

2.4 Espaces symplectiques et symplectomorphismes

Soit E un espace vectoriel réel de dimension d. On appelle forme symplectique sur E une forme bilinéaire alternée $\omega: E \times E \to \mathbb{R}$, vérifiant de plus la propriété suivante dite de non-dégénérescence :

$$\forall x \in E - \{0\}, \exists y \in E : \omega(x, y) \neq 0.$$

On fixe une telle forme ω . Soit F un sous-espace vectoriel de E. On note

$$F^{\omega} = \{ y \in E \mid \forall x \in F, \omega(x, y) = 0 \}$$

son $orthogonal\ symplectique$; on admet que c'est un sous-espace vectoriel de E.

17. Pour tout $x \in E$, on note $\ell_x \in F^*$ la forme linéaire définie sur F par

$$\forall y \in F, \ell_x(y) = \omega(x, y).$$

Montrer que $\phi: x \mapsto \ell_x$ est une application linéaire de E dans F^* .

On admet que ϕ est surjective.

- 18. En déduire que $\dim F^{\omega} = \dim E \dim F$.
- 19. Soit $e \in E \{0\}$. Montrer qu'il existe $f \in E$ tel que $\omega(e, f) = 1$.
- 20. On fixe deux tels vecteurs e et f et on note H = Vect(e, f). Montrer que $E = H \oplus H^{\omega}$.
- 21. En déduire que d est pair et que, en notant d=2n, on peut trouver une base $\mathbf{b}=(e_1,\ldots,e_n,f_1,\ldots,f_n)$ de E telle que

$$\forall i, j \in [1, n], \omega(e_i, e_j) = \omega(f_i, f_j) = 0 \text{ et } \omega(e_i, f_j) = -\omega(f_j, e_i) = \delta_{i,j}.$$

On fixe une telle base **b** de E. Un endomorphisme f de E est un $symplectomorphisme si <math>\forall x, y \in E, \omega(f(x), f(y)) = \omega(x, y)$. On note X et Y les matrices colonnes représentant des vecteurs x et y de E dans la base **b**.

22. Montrer que pour tous $x, y \in E$, $\omega(x, y) = X^T J Y$. En déduire que $f \in \mathcal{L}(E)$ est un symplectomorphisme ssi $\mathrm{Mat}_{\mathbf{b}}(f) \in \mathrm{Sp}_{2n}$.

On définit $d: E^{2n} \to \mathbb{R}$ par : $\forall x_1, \dots, x_{2n} \in E$,

$$d(x_1,\ldots,x_{2n}) = \sum_{\sigma \in \mathcal{S}_{2n}} \varepsilon(\sigma)\omega(x_{\sigma(1)},x_{\sigma(2)})\ldots\omega(x_{\sigma(2n-1)},x_{\sigma(2n)}).$$

23. Montrer qu'il existe un réel λ tel que

$$\forall x_1, \dots, x_{2n} \in E, d(x_1, \dots, x_{2n}) = \lambda \det_{\mathbf{b}}(x_1, \dots, x_{2n}).$$

- 24. Montrer que $\lambda = (-1)^{\frac{n(n-1)}{2}} 2^n \times n!$.
- 25. En déduire une autre preuve que si $M \in \operatorname{Sp}_{2n}$, alors $\det M = 1$.