Fractions rationnelles

Décomposition en éléments simples

EXERCICE 1. ••• *Calculs explicites de DES* Décomposer en éléments simples :

1.
$$\frac{X^3}{X^2-3X+2} \operatorname{dans} \mathbb{R}(X);$$

5.
$$\frac{X}{X^3-1}$$
 dans $\mathbb{R}(X)$;

2.
$$\frac{X^3 + X^2 + 1}{X^3 + X^2 + X}$$
 dans $\mathbb{C}(X)$;

6.
$$\frac{1}{(X^2+1)(X^2+X+2)}$$
 dans $\mathbb{R}(X)$;

3.
$$\frac{X-1}{X^3-3X-2} \operatorname{dans} \mathbb{R}(X);$$

7.
$$\frac{n!}{X(X-1)...(X-n)}$$
 dans $\mathbb{R}(X)$;

4.
$$\frac{1}{(X-1)^2(X+1)^2}$$
 dans $\mathbb{R}(X)$;

8.
$$\frac{4}{(X^2+1)^2}$$
 dans $\mathbb{R}(X)$.

EXERCICE 2. • O Calcul d'une somme par DES

Simplifier, pour $n \in \mathbb{N}^*$, l'expression $u_n = \sum_{k=1}^n \frac{k+3}{k^3 + 3k^2 + 2k}$.

En déduire la limite de (u_n) .

EXERCICE 3. \clubsuit – $\bullet \bullet \bigcirc$ *Primitives de fractions rationnelles*

Calculer une primitive des fonctions suivantes :

$$1. \ x \mapsto \frac{1}{x^2 + 2} \ ;$$

3.
$$x \mapsto \frac{x}{x^4 - 16}$$
;

$$2. \ x \mapsto \frac{1}{1-x^2};$$

4.
$$x \mapsto \frac{1}{x(1+x^2)^2}$$
.

EXERCICE 4. \clubsuit/\diamondsuit – $\bullet \bullet \bigcirc$ *Inverse des polynômes de Tchebychev* Décomposer en éléments simples $\frac{1}{T_n}$, où T_n est le n-ème polynôme de Tchebychev.

EXERCICE 5. • • • • *Identité avec sommes et racines*

Soit $n \ge 2$, soit $P \in \mathbb{R}[X]$ scindé, à racines simples $\alpha_1, \dots, \alpha_n$. Soit $r \in [0, n-1]$

- 1. Écrire la décomposition en éléments simples de $\frac{X'}{D}$.
- 2. En déduire la valeur de $\sum_{k=1}^{n} \frac{\alpha'_k}{P'(\alpha_k)}$.
- 3. En procédant de façon analogue, déterminer les valeurs de $\sum_{k=1}^{n} \frac{1}{\alpha_k P'(\alpha_k)}$ et $\sum_{k=1}^{n} \frac{P''(\alpha_k)}{P'(\alpha_k)}$.

EXERCICE 6. $\bullet \bullet \bigcirc$ *Inverse de* P^2

Soit $P \in \mathbb{K}[X]$ unitaire, à racines simples $\alpha_1, ..., \alpha_n$.

Décomposer en éléments simples la fraction rationnelle $\frac{1}{D^2}$.

EXERCICE 7. $\clubsuit/\diamondsuit - \bullet \bullet \bullet \bullet$ *DES de* $\frac{P'}{P}$ *et théorème de Gauss-Lucas* Soit $P \in \mathbb{K}[X]$ scindé non constant.

- 1. Expliciter en fonction des racines de P et de leur multiplicité la décomposition en éléments simples de la fraction $\frac{P'}{P}$.
- 2. On suppose que $\mathbb{K} = \mathbb{R}$ et que P est scindé à racines simples. Montrer qu'il en est de même de $P' + \alpha P$, pour tout $\alpha \in \mathbb{R}$.
- 3. On suppose que $\mathbb{K} = \mathbb{C}$. Montrer que les racines de P' sont des barycentres des racines de P.

2 Autres exercices

EXERCICE 8. $\bigcirc\bigcirc\bigcirc$ Dérivée d'une fraction rationnelle

Si F est une fraction rationnelle de $\mathbb{K}(X)$, représentée par le quotient $\frac{A}{B}$, on définit la fraction dérivée de F par $F' = \frac{A'B - AB'}{B^2}$.

- 1. Montrer que la définition de F' ne dépend pas du représentant $\frac{A}{B}$ choisi pour F.
- 2. Déterminer le degré de F' en fonction de celui de F.

EXERCICE 9. $\bullet \bigcirc \bigcirc$ *Équations dans* $\mathbb{C}(X)$

- 1. Montrer qu'il n'existe pas $F \in \mathbb{C}(X)$ telle que $F^2 = \frac{1}{X}$.
- 2. Déterminer les $R \in \mathbb{C}(X)$ telles que $R^2 = \frac{X^2}{(X+1)(X+2)}$.
- 3. Montrer qu'il n'existe pas $F \in \mathbb{C}(X)$ telle que $F' = \frac{1}{X}$.
- 4. Déterminer les $R \in \mathbb{C}(X)$ telles que $R' = \frac{1}{X^2 + 1}$.

EXERCICE 10. \clubsuit/\lozenge – $\bullet \bullet \bigcirc$ *Ensemble des valeurs d'une fonction rationnelle*

Que peut valoir l'ensemble des valeurs prises par une fonction rationnelle, associée à une fraction rationnelle $F \in \mathbb{C}(X)$?

EXERCICE 11. ♣ - ●●○ Coefficients de Taylor d'une fraction rationnelle

Soit $F \in \mathbb{K}(X)$ une fraction rationnelle dont 0 n'est pas un pôle. Montrer que la suite $\left(\frac{F^{(n)}(0)}{n!}\right)_{n \in \mathbb{N}}$ vérifie une relation de récurrence linéaire (non triviale) à coefficients constants

EXERCICE 12. \clubsuit – $\bullet \bullet \bigcirc$ *Minoration de la valeur d'un polynôme en un entier* Soit $P \in \mathbb{C}[X]$ unitaire de degré $n \ge 1$. On note $Q = X(X - 1) \cdots (X - n)$.

- 1. Montrer $\frac{P}{Q} = \sum_{k=0}^{n} \frac{(-1)^{n-k}}{n!} \binom{n}{k} P(k) \frac{1}{X-k}$.
- 2. En déduire $\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} P(k) = n!$.
- 3. En déduire $\max_{k \in [0,n]} \{|P(k)|\} \ge \frac{n!}{2^n}$.
- 4. Ce résultat a été obtenu en plus grande généralité dans la feuille de TD précédente. Comment généraliser la méthode de cet exercice ?

Exercice 13. ♣ - ●●● Inégalités de Laguerre

Soit $P \in \mathbb{R}[X]$ de degré n. Montrer les assertions suivantes.

- 1. Si P est scindé, alors $\forall k \in \mathbb{N}^*, \forall x \in \mathbb{R}, P^{(k-1)}(x) P^{(k+1)}(x) \leq P^{(k)}(x)^2$.
- 2. P est scindé à racines simples ssi $\forall k \in \mathbb{N}^*, \forall x \in \mathbb{R}, P^{(k-1)}(x) P^{(k+1)}(x) < P^{(k)}(x)^2$.

Indications

Exercice 4. Les coefficients dans la décomposition en éléments simples peuvent êter calculés avec T'_n .

Exercice 7. Pour 2., étudier la fonction $x \mapsto \frac{P'(x) + \alpha P(x)}{P(x)}$. Pour 3., si β est une racine de P', alors $\frac{P'}{P}$ évalué en β vaut 0.

Exercice 10. Si P et Q sont premiers entre eux, étudier l'équation $\frac{P(z)}{Q(z)} = \alpha$, pour $\alpha \in \mathbb{C}$. Bien clarifier si on raisonne par déductions ou par équivalence.