DM 19 – Groupes finis

1 Théorème de Cauchy

Soient G un groupe fini et p un diviseur premier de |G|. On cherche à montrer qu'il existe un élément x de G d'ordre p.

On note E l'ensemble des familles $(g_c)_{c \in \mathbb{Z}/p\mathbb{Z}}$ de G indexées par $\mathbb{Z}/p\mathbb{Z}$ et telles que $\prod_{k=0}^{p-1} g_{\overline{k}} = e_G$.

1. On définit une relation \mathcal{R} sur E par :

$$(g_c)\mathcal{R}(g_c') \iff \exists a \in \mathbb{Z}/p\mathbb{Z} : \forall c \in \mathbb{Z}/p\mathbb{Z}, g_c' = g_{a+c}.$$

Montrer qu'il s'agit d'une relation d'équivalence sur *E*.

Si $(g_c) \in E$, on note $H_{(g_c)} = \{ a \in \mathbb{Z} / p\mathbb{Z} \mid \forall c \in \mathbb{Z} / p\mathbb{Z}, g_{a+c} = g_c \}.$

- 2. Montrer que $H_{(g_c)}$ est un sous-groupe de $\mathbb{Z}/p\mathbb{Z}$.
- 3. En déduire l'alternative suivante :
 - Ou bien $H_{(g_c)} = {\overline{0}}$ et $\operatorname{cl}_{\mathscr{R}}((g_c))$ est de cardinal p.
 - Ou bien $H_{(g_c)} = \mathbb{Z}/p\mathbb{Z}$ et $\operatorname{cl}_{\mathscr{R}}((g_c))$ est de cardinal 1.
- 4. En considérant la partition de E associée à \mathcal{R} , en déduire que le nombre de \mathcal{R} -classes d'équivalence de cardinal 1 est divisible par p.
- 5. En déduire que le nombre N d'éléments x de G d'ordre p vérifie $N \equiv -1$ [p].

En particulier, il existe un élément d'ordre p dans G : c'est le théorème de Cauchy.

2 Structure de $(\mathbb{Z}/n\mathbb{Z})^{\times}$

On cherche à déterminer la structure du groupe des inversibles de $\mathbb{Z}/n\mathbb{Z}$. On suppose connu le caractère cyclique de $(\mathbb{Z}/p\mathbb{Z})^{\times}$ si p est un nombre premier.

1. Montrer que si p est un nombre premier et si $\alpha \ge 1$ est un entier naturel,

$$\left|\left(\mathbb{Z}/p^{\alpha}\mathbb{Z}\right)^{\times}\right|=p^{\alpha}-p^{\alpha-1}.$$

2.1 Étude de $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ pour $p \neq 2$ et $\alpha \geq 2$

Soient *p* un nombre premier impair et $\alpha \ge 2$ un entier naturel.

- 2. Montrer que pour tout $k \in \mathbb{N}^*$, $(1+p)^{p^k}$ s'écrit $1+\lambda p^{k+1}$, avec $\lambda \wedge p=1$.
- 3. En déduire que la classe de 1 + p dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est d'ordre $p^{\alpha-1}$.
- 4. Soit $x \in \mathbb{Z}$ dont la classe dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est d'ordre p-1. Montrer que la classe de x dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est d'ordre un multiple de p-1.
- 5. En déduire l'existence de $y \in \mathbb{Z}$ dont la classe dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est d'ordre p-1.
- 6. Montrer que la classe de (1+p)y dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est d'ordre $p^{\alpha}-p^{\alpha-1}$. En déduire que $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ est cyclique.

2.2 Étude de $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$

Soit $\alpha \ge 3$ un entier naturel.

- 7. Montrer que $(\mathbb{Z}/2\mathbb{Z})^{\times}$ est réduit à un élément et que $(\mathbb{Z}/4\mathbb{Z})^{\times}$ est isomorphe à $\mathbb{Z}/2\mathbb{Z}$.
- 8. Montrer que pour tout $k \in \mathbb{N}^*$, 5^{2^k} s'écrit $1 + \lambda 2^{k+2}$, avec λ un entier impair.
- 9. En déduire que l'ordre de la classe de 5 dans $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$ est $2^{\alpha-2}$.
- 10. Montrer que l'application $\phi: \mathbb{U}_2 \times \mathbb{Z}/2^{\alpha-2}\mathbb{Z} \to (\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$, $(\pm 1, \bar{k}) \mapsto \pm 5^{\bar{k}}$ est bien définie et que c'est un isomorphisme de groupes.

2.3 Quand $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est-il cyclique?

Soit $n \ge 2$ un entier, dont on note $n = \prod_{k=1}^{r} p_k^{\alpha_k}$ la décomposition en facteurs premiers.

- 11. Montrer que $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est isomorphe à $(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^{\times}$.
- 12. Soient $C_1, ..., C_m$ des groupes cycliques. Montrer que le produit $C_1 \times \cdots \times C_m$ est cyclique ssi les cardinaux $|C_1|, ..., |C_m|$ sont deux à deux premiers entre eux.
- 13. Déterminer les entiers n pour lesquels $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique.