Nombres réels

Jeremy Daniel

You don't have to be a mathematician to have a feel for numbers.

John F. Nash

Calcul sur les réels 1

Inégalités 1.1

Proposition 1.1 (Inégalités et somme)

Soient x, y, z, t des nombres réels.

- $Si \ x \le z \ et \ y \le t$, alors $x + y \le z + t$;
- $-Si \ x \le z \ et \ y \ge t$, alors $x y \le z t$.

Remarque 1.2

Par récurrence, on en déduit que si I est un ensemble fini et si, pour tout $i \in I$, on dispose de réels x_i et y_i tels que $x_i \leq y_i$, alors $\sum_{i \in I} x_i \leq \sum_{i \in I} y_i$.

Proposition 1.3 (Inégalités et produit)

Soient x, y, z, t des nombres réels positifs.

- $Si \ x \le z \ et \ y \le t, \ alors \ xy \le zt;$ $Si \ x \le z \ et \ y \ge t > 0, \ alors \ \frac{x}{y} \le \frac{z}{t}.$

Remarque 1.4

Comme précédemment, si on dispose de réels positifs $x_i \leq y_i$, alors $\prod_{i \in I} x_i \leq \prod_{i \in I} y_i$.

Proposition 1.5 (Inégalité arithmético-géométrique)

On dispose des inégalités suivantes entre nombres réels :

$$- Si \ x, y \ge 0, \ \sqrt{xy} \le \frac{x+y}{2} \ avec \ égalité \ ssi \ x = y;$$

$$- Si \ x, y \in \mathbb{R}, \ xy \le \frac{x^2 + y^2}{2} \ avec \ égalité \ ssi \ x = y;$$

$$- Si \ x > 0, \ x + \frac{1}{x} \ge 2 \ avec \ égalité \ ssi \ x = 1.$$

THÉORÈME 1.6 (Inégalité de Cauchy-Schwarz)

Soient $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles finies de nombres réels. On a l'inégalité :

$$\sum_{i \in I} a_i b_i \le \left(\sum_{i \in I} a_i^2\right)^{1/2} \left(\sum_{i \in I} b_i^2\right)^{1/2},$$

avec égalité ssi

- ou bien tous les a_i sont nuls.
- ou bien il existe $\lambda \in \mathbb{R}_+ : \forall i \in I, b_i = \lambda a_i$.

Remarque 1.7

Deux familles vérifiant la condition du cas d'égalité sont dites positivement liées.

1.2 Valeur absolue

DÉFINITION 1.8 (Valeur absolue)

Soit x un réel. La valeur absolue de x, notée |x|, est définie par $|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases}$.

Proposition 1.9 (Autre définition)

Pour tout réel x, $|x| = \sqrt{x^2}$.

THÉORÈME 1.10 (Inégalité triangulaire)

Soient x, y des nombres réels.

On a $|x+y| \le |x| + |y|$, avec égalité ssi x et y ont le même signe.

Théorème 1.11 (Inégalité triangulaire inversée)

Soient x, y des nombres réels. On a $|x + y| \ge ||x| - |y||$.

Remarque 1.12

En pratique, on sait le plus souvent qui de x et de y est le plus grand en valeur absolue. Si $|x| \ge |y|$, on a ainsi : $|x+y| \ge |x| - |y|$.

 $En \ toutes \ lettres$: la valeur absolue d'une somme de deux nombres est supérieure ou égale à la différence des valeurs absolue des deux nombres.

PROPOSITION 1.13 (Valeur absolue et maximum/minimum)

Soient x, y des nombres réels.

$$- \max(x, y) = \frac{x + y + |x - y|}{2};$$

$$-\min(x,y) = \frac{x+y-|x-y|}{2}.$$

Partie entière 1.3

DÉFINITION 1.14 (Partie entière)

Soit x un réel. La partie entière de x, notée |x|, est le plus grand $n \in \mathbb{Z}$ tel que $n \leq x$.

Proposition 1.15 (Caractérisation)

|x| est l'unique entier n tel que $n \le x < n+1$.

Définition 1.16 (Partie entière supérieure, partie fractionnaire - HP) Soit x un réel.

- La partie entière supérieure de x, notée $\lceil x \rceil$, est l'unique $n \in \mathbb{Z}$ tel que $n-1 < x \leq n$.
- La partie fractionnaire de x, notée $\{x\}$, est définie par $\{x\} = x |x|$.

Proposition 1.17

Soit x un réel, soit n un entier.

$$\begin{array}{ll} - \ \lfloor x+n \rfloor = \lfloor x \rfloor + n \\ - \ \{x+n\} = \{x\} \end{array} & - \ \lceil x \rceil = \left\{ \begin{array}{ll} \lfloor x \rfloor & si \ x \in \mathbb{Z} \\ \lfloor x \rfloor + 1 & sinon \\ - \ \lceil x \rceil = - \lfloor -x \rfloor \end{array} \right.$$

Exemples 1.18

- $|\pi| = 3$; $[\pi] = 4$; $\{\pi\} = 0, 1415926535...$
- $[2] = [2] = 2; \{2\} = 0$ $[-1, 4] = -2; [-1, 4] = -1; \{-1, 4\} = 0, 6$

2 Propriétés des réels

Parties denses de \mathbb{R} 2.1

DÉFINITION 2.1 (Partie dense de \mathbb{R})

Une partie A de \mathbb{R} est dense ssi $\forall x, y \in \mathbb{R}, (x < y) \implies (A \cap]x, y \neq \emptyset$.

Remarque 2.2

Plus généralement, si I est un intervalle de \mathbb{R} , on dira que A est dense dans I si

$$\forall x, y \in I, (x < y) \implies (A \cap]x, y \neq \emptyset$$
.

THÉORÈME 2.3 (\mathbb{Q} et $\mathbb{R} - \mathbb{Q}$ sont des parties denses)

Les ensembles \mathbb{Q} et $\mathbb{R} - \mathbb{Q}$ sont tous deux denses dans \mathbb{R} .

^{1.} On ne confondra pas cette notation avec celle de la valeur absolue!

2.2 Propriété de la borne supérieure

DÉFINITION 2.4 (Majorant)

Soit $A \subset \mathbb{R}$, soit $M \in \mathbb{R}$. On dit que M est un majorant de A si $\forall x \in A, x \leq M$.

On dit que A est une partie majorée si elle admet un majorant.

DÉFINITION 2.5 (Maximum)

Soit $A \subset \mathbb{R}$, soit $M \in \mathbb{R}$. On dit que M est le maximum de A si $M \in A$ et si M est un majorant de A.

Exemple 2.6

Les intervalles [0, 1] et [0, 1] sont tous deux majorés par 1; 1 est le maximum de [0, 1] tandis que [0, 1] n'a pas de maximum.

DÉFINITION 2.7 (Borne supérieure)

Soit $A \subset \mathbb{R}$, soit $M \in \mathbb{R}$. On dit que M est la borne supérieure de A si

- -M est un majorant de A.
- Il n'existe pas de majorant de A strictement inférieur à M.

Proposition 2.8 (Caractérisation de la borne supérieure)

Avec les notations précédentes, M est la borne supérieure de A ssi

- $\forall x \in A, x \leq M$;
- $\forall \varepsilon > 0, \exists x \in A : x \ge M \varepsilon.$

Théorème 2.9 (Propriété de la borne supérieure)

Toute partie majorée non vide de \mathbb{R} admet une borne supérieure.

Remarque 2.10

En prenant les inégalités opposées, on définit de même les notions de minorant, minimum et borne inférieure. Toute partie non vide minorée de \mathbb{R} admet une borne inférieure.

2.3 Parties convexes et intervalles de \mathbb{R}

DÉFINITION 2.11 (Partie convexe de R)

Une partie A de \mathbb{R} est convexe si $\forall x, y \in A, \forall t \in [0, 1], (1 - t)x + ty \in A$.

Remarque 2.12

Comme l'ensemble $\{(1-t)x + ty, t \in [0,1]\}$ est simplement le segment [x,y] (ou [y,x] si y < x), cela revient à demander : $\forall x, y \in A, (x < y) \implies [x,y] \subset A$.

Théorème 2.13 (Les parties convexes sont les intervalles)

Une partie A de \mathbb{R} est convexe ssi c'est un intervalle de \mathbb{R} .