DS 2 de mathématiques – Corrigé

1 Contrôle technique

1. Notons I cette intégrale. On pose $u = \sqrt{x}$. On a $du = \frac{dx}{2\sqrt{x}} = \frac{dx}{2u}$. Donc,

$$I = 2\int_{2}^{3} \ln(u-1)du = 2[(u-1)\ln(u-1) - (u-1)]_{2}^{3} = 4\ln 2 - 2.$$

- 2. Une formule avec arcsin.
 - (a) Comme $\sqrt{x} \in [0, 1]$, $\arcsin(\sqrt{x})$ est bien défini. On a

$$\sin(2\arcsin(\sqrt{x}) - \pi/2) = -\cos(2\arcsin(\sqrt{x})) = 2\sin^2(\arcsin(\sqrt{x})) - 1 = 2x - 1.$$

Comme $\arcsin(\sqrt{x}) \in [0, \pi/2]$, $2\arcsin(\sqrt{x}) - \pi/2 \in [-\pi/2, \pi/2]$. Donc, par définition de $\arcsin(2x-1) = 2\arcsin(\sqrt{x}) - \pi/2$. On en déduit la formule annoncée :

$$\arcsin(\sqrt{x}) = \frac{\pi}{4} + \frac{1}{2}\arcsin(2x - 1).$$

(b) Soit $x \in]0,1[$. Les fonctions dans les membres de gauche et droite de l'égalité précédente sont dérivables en x par opérations usuelles (on a bien éliminé 0 et 1 pour éviter les problèmes de non-dérivabilité de $\sqrt{}$ et arcsin) de dérivée respective :

$$\frac{1}{2\sqrt{x}} \frac{1}{\sqrt{1 - \sqrt{x^2}}} = \frac{1}{2\sqrt{x - x^2}} \text{ et } \frac{1}{\sqrt{1 - (2x - 1)^2}} = \frac{1}{\sqrt{4x - 4x^2}} = \frac{1}{2\sqrt{x - x^2}}.$$

Ces deux dérivées étant égales sur]0,1[, il existe une constante C telle que :

$$\forall x \in]0,1[,\arcsin(\sqrt{x}) = C + \frac{1}{2}\arcsin(2x - 1).$$

Les deux membres étant définis sur [0,1] et y étant continus, l'égalité est en fait valable sur [0,1]. En considérant la valeur en 0, on a $0=C+\frac{1}{2}\arcsin(-1)=C-\frac{\pi}{4}$. Donc, $C=\frac{\pi}{4}$, ce qui conclut.

3. Fonction de Lambert.

- (a) Par produit, f est dérivable sur [-1,+∞[et f'(t) = (t+1)e^t, pour tout t ≥ -1. On a f' ≥ 0 sur [-1,+∞[avec égalité seulement en -1, donc f est strictement croissante sur [-1,+∞[.
 De plus, f(-1) = -1/e, lim f = +∞ et f est continue. On en déduit que f est une bijection de [-1,+∞[sur [-1/e,+∞[(soit par ce qu'on appelle en Terminale le théorème de la bijection; soit en séparant l'argument d'injectivité (qui vient de la stricte croissance) et l'argument de surjectivité (qui vient de la continuité et du calcul des valeurs/limites aux bornes)).
- (b) Soit $x \in]-1/e, +\infty[$. On remarque que t=W(x)>-1 car W(-1)=-1/e. D'après le calcul précédent de la dérivée, on a donc $f'(t)\neq 0$. Donc, W est dérivable en x de dérivée :

$$W'(x) = \frac{1}{f'(t)} = \frac{1}{(t+1)e^t} = \frac{1}{(W(x)+1)e^{W(x)}} = \frac{1}{x+e^{W(x)}},$$

la dernière égalité venant de ce que par définition $W(x)e^{W(x)}=f(W(x))=x$.

2 Un autre calcul de $\zeta(2)$

Voir en fin de document

3 π est irrationnel

Voir en fin de document

4 Intégrales impropres et transformation de Laplace

4.1 Propriétés de $\mathcal{R}(I)$

1. Soit x > a. Par linéarité de l'intégrale, on a

$$\int_{a}^{x} \left(\lambda f(t) + \mu g(t)\right) dt = \lambda \int_{a}^{x} f(t) dt + \mu \int_{a}^{x} g(t) dt.$$

Le membre de droite converge vers $\lambda \int_a^{+\infty} f(t)dt + \mu \int_a^{+\infty} g(t)dt$ par opérations élémentaires sur les limites. Ceci montre en même temps que $\lambda f + \mu g \in \mathcal{R}(I)$ et que

$$\int_{a}^{+\infty} \left(\lambda f(t) + \mu g(t)\right) dt = \lambda \int_{a}^{+\infty} f(t) dt + \mu \int_{a}^{+\infty} g(t) dt.$$

2. Soit x > a. Par relation de Chasles, on a

$$\int_0^x f(t)dt = \int_0^a f(t)dt + \int_a^x f(t)dt.$$

Si $f_{|J} \in \mathcal{R}(J)$, $\int_a^x f(t)dt$ a une limite finie quand $x \to +\infty$. Par opérations sur les limites, $\int_0^x f(t)dt$ a aussi une limite finie quand $x \to +\infty$ et on a

$$\int_0^{+\infty} f(t)dt = \int_0^a f(t)dt + \int_a^{+\infty} f(t)dt.$$

On montre de même que si $f \in \mathcal{R}(I)$, alors $f_{|J} \in \mathcal{R}(J)$ et que la même formule est vérifiée, en écrivant que $\int_a^x f(t)dt = \int_0^x f(t)dt - \int_0^a f(t)dt$, pour tout x > a.

3. Soit x > 1. On calcule, si $\alpha \neq 1$,

$$\int_{1}^{x} \frac{dt}{t^{\alpha}} = \left[\frac{t^{1-\alpha}}{1-\alpha}\right]_{1}^{x} = \frac{x^{1-\alpha}-1}{1-\alpha}.$$

Ceci a une limite finie quand $x \to +\infty$ ssi $\alpha > 1$ et cette limite vaut $\int_1^{+\infty} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1}$. Pour $\alpha = 1$, $\int_1^x \frac{dt}{t} = \ln x$ n'a pas une limite finie quand $x \to +\infty$.

- 4. Soit f une fonction continue sur $I = [a, +\infty[$ telle que $|f| \in \mathcal{R}(I)$. On cherche à montrer que $f \in \mathcal{R}(I)$.
 - (a) Soit $x \in I$. La quantité $f_+(x) f_-(x)$ vaut f(x) 0 = f(x) si $f(x) \ge 0$ et 0 (-f(x)) = f(x) si $f(x) \le 0$. On a donc toujours $f(x) = f_+(x) f_-(x)$. De même, la quantité $f_+(x) + f_-(x)$ vaut f(x) + 0 = f(x) si $f(x) \ge 0$ et 0 f(x) = -f(x) si $f(x) \le 0$; c'est donc |f(x)| dans les deux cas : $|f(x)| = f_+(x) + f_-(x)$.
 - (b) On a supposé que $|f| \in \mathcal{R}(I)$. On peut donc trouver M > 0 tel que pour tout $x \in I$, $\int_a^x |f(t)| dt \leq M$. Comme f_+ et f_- sont positives, $f_+ \leq |f|$ et donc, par croissance de l'intégrale, $\int_a^x f_+(x) dx \leq \int_a^x |f(x)| dx \leq M$, pour tout $x \in I$ (notons que f_+ est continue puisque $f_+ = \frac{f + |f|}{2}$, de même pour f_-); comme f_+ est positive, $f_+ \in \mathcal{R}(I)$. De même, $f_- \in \mathcal{R}(I)$. Comme $f_- \in f_+$, la question 1. montre que f_- est aussi dans f_-

4.2 Transformation de Laplace

5. Soit x > 0, soit X > 0. On calcule

$$\int_0^X \mathbb{1}(t)e^{-xt}dt = -\frac{1}{x} \left[e^{-xt} \right]_{t=0}^{t=X} = \frac{1 - e^{-xX}}{x}.$$

Quand $X \to +\infty$, ceci converge vers $\frac{1}{x}$.

Donc, $\mathbb{1} \in \mathcal{S}$ et $\mathcal{L}(\mathbb{1})(x) = \frac{1}{x}$, pour tout x > 0.

6. Soit f une fonction continue bornée sur \mathbb{R}_+ . On note M>0 un réel tel que $|f|\leq M$. Soit x>0, soit X>0. On a

$$\int_0^X |f(t)|e^{-tx}dt \leq M \int_0^X e^{-tx}dt \leq M \int_0^{+\infty} e^{-tx}dt = \frac{M}{x}.$$

Ceci étant valable pour tout X > 0, la fonction $t \mapsto |f(t)|e^{-tx}$ est dans $\mathcal{R}(\mathbb{R}_+)$, donc $t \mapsto f(t)e^{-tx}$ aussi. Comme x > 0 est quelconque, f est dans \mathcal{S} .

7. Soit x > 0. On cherche une primitive de $t \mapsto \sin(t)e^{-xt}$. Une primitive de $t \mapsto e^{(i-x)t}$ est $t \mapsto \frac{e^{(i-x)t}}{i-x}$. Une primitive de $t \mapsto \sin(t)e^{-xt}$ est obtenue en en prenant la partie imaginaire; après calculs, $t \mapsto \frac{-e^{-xt}}{1+x^2}(\cos t + x\sin t)$ convient. Dès lors,

$$\int_0^X \sin(t)e^{-xt}dt = \left[\frac{-e^{-xt}}{1+x^2}(\cos t + x\sin t)\right]_{t=0}^{t=X} = \frac{1}{1+x^2} - \frac{e^{-xX}}{1+x^2}(\cos X + x\sin X).$$

On prend la limite de cette expression quand $X\to +\infty$. Le facteur $\cos X+x\sin X$ est borné tandis que e^{-xX} tend vers 0, donc le terme $\frac{e^{-xX}}{1+x^2}(\cos X+x\sin X)$ tend vers 0. Par opérations élémentaires, on a donc :

$$\int_0^{+\infty} \sin(t)e^{-xt}dt = \frac{1}{1+x^2}.$$

- 8. Dérivée de $\mathcal{L}(f)$.
 - (a) Notons M>0 un réel tel que $|f|\leq M.$ Soit X>0. On a

$$\int_0^X |g(t)| e^{-tx} dt \leq M \int_0^X t e^{-tx} dt = M \Big([-\frac{t}{x} e^{-tx}]_{t=0}^X + \int_0^X \frac{e^{-tx}}{x} dt \Big) \leq \frac{M}{x} \int_0^{+\infty} e^{-tx} dt = \frac{M}{x^2}.$$

Donc, $|g| \in \mathcal{S}$, et donc $g \in \mathcal{S}$.

(b) Soit $x \in \mathbb{R}$. Déjà, E(x) est positif car intégrale entre 0 et 1 d'une fonction positive. Soit $u \in [0,1]$. On a $|(1-u)e^{xu}| \leq |1-u|e^{|xu|} \leq e^{|x|}$. Donc, par croissance de l'intégrale, $E(x) \leq \int_0^1 e^{|x|} du = e^{|x|}$.

De plus, $E(x) = \left[\frac{(1-u)e^{xu}}{x}\right]_{u=0}^{u=1} + \frac{1}{x} \int_0^1 e^{xu} du = -\frac{1}{x} + \frac{e^x - 1}{x^2}$. On isole e^x et on trouve:

$$e^x = 1 + x + x^2 E(x).$$

(c) Pour tout $t \in \mathbb{R}_+$, on a

$$\frac{f(t)e^{-t(x+h)}-f(t)e^{-tx}}{h}+tf(t)e^{-tx}=f(t)e^{-tx}\Big(\frac{e^{-th}-1}{h}+t\Big)=ht^2f(t)e^{-tx}E(-th).$$

On intègre entre 0 et $+\infty$:

$$\frac{\mathcal{L}(f)(x+h) - \mathcal{L}(f)(x)}{h} + \mathcal{L}(g)(x) = h \int_0^{+\infty} t^2 f(t) e^{-tx} E(-th) dt.$$

(d) On veut montrer que le membre de gauche tend vers 0 quand $h \to 0$. Il s'agit donc de montrer que $\int_0^{+\infty} t^2 f(t) e^{-tx} E(-th) dt \to 0$ quand $h \to 0$. On fixe X > 0 et on note M un majorant de |f|. Par inégalité triangulaire, croissance de l'intégrale et l'esptimation sur E, question 8.b), on a :

$$\left| \int_0^X t^2 f(t) e^{-tx} E(-th) dt \right| \le M \int_0^X t^2 e^{-t \left(x - |h| \right)} dt.$$

L'intégrale de droite est calculée par deux IPP successives :

$$\int_0^X t^2 e^{-t(x-|h|)} dt = \frac{X^2}{x-|h|} e^{-X(x-|h|)} + \frac{2X}{(x-|h|)^2} e^{-X(x-|h|)} + \frac{2}{(x-|h|)^2} (1 - e^{-X(x-|h|)}).$$

En faisant tendre X vers $+\infty$, on a donc :

$$\left| \int_0^{+\infty} t^2 f(t) e^{-tx} E(-th) dt \right| \le \frac{2M}{(x-|h|)^2}.$$

Finalement, $\left| \frac{\mathcal{L}(f)(x+h) - \mathcal{L}(f)(x)}{h} + \mathcal{L}(g)(x) \right| \leq \frac{2Mh}{(x-|h|^2)}$, qui tend vers 0, quand $h \to 0$; ce qui conclut.

4.3 Calcul de l'intégrale de Dirichlet

9. La continuité de sinc sur \mathbb{R}_+^* s'obtient par opérations élémentaires. On sait que $\frac{\sin x}{x}$ tend vers 1, ce qui justifie la continuité en 0.

De plus, sinc est une fonction bornée. En effet, si $x \ge 0$, $|\sin x| = \left| \int_0^x \cos(t) dt \right| \le \int_0^x |\cos(t)| dt \le \int_0^x 1 dt = x$, de sorte que $|\sin t|$ est majorée par 1. Par la question 6, $\sin t \in \mathcal{S}$.

- 10. Soit X > 1. On a $\int_1^X \frac{\sin t}{t} dt = -\left[\frac{\cos t}{t}\right]_1^X \int_1^X \frac{\cos t}{t^2} dt$. L'intégrale de droite converge quand $X \to +\infty$. En effet, $\left|\frac{\cos t}{t^2}\right| \le \frac{1}{t^2}$ et $t \mapsto \frac{1}{t^2}$ est dans $\mathcal{R}([1, +\infty[)$. De plus, le crochet converge vers $\cos 1$. Ainsi, $\int_1^X \frac{\sin t}{t} dt$ converge quand $X \to +\infty$. Donc, $\int_0^X \mathrm{sinc}(t) dt = \int_0^1 \mathrm{sinc}(t) dt + \int_1^X \frac{\sin t}{t} dt$ aussi. Donc, $\mathrm{sinc} \in \mathcal{R}(I)$.
- 11. La fonction sinc est bornée donc par la question 8. $\mathcal{L}(\text{sinc})' = -\mathcal{L}(\text{sin})$. On a calculé $\mathcal{L}(\text{sin})$, question 7. On a donc :

$$\forall x > 0, \mathcal{L}(\text{sinc})' = -\frac{1}{1+x^2}.$$

Il existe donc $C \in \mathbb{R}$ tel que $\mathcal{L}(\operatorname{sinc})(x) = C - \arctan(x)$, pour x > 0.

12. Soit x>0. Par inégalité triangulaire et croissance de l'intégrale (étendue à une borne infinie), on a

$$\left| \int_0^{+\infty} \operatorname{sinc}(t) e^{-tx} dt \right| \le \int_0^{+\infty} e^{-tx} dt = \frac{1}{x}.$$

Donc, $\mathcal{L}(\mathrm{sinc})(x) \to 0$, quand $x \to 0$. Comme $\arctan(x)$ tend vers $\pi/2$, quand $x \to +\infty$, on en déduit que $C = \frac{\pi}{2}$.

13. Pour tout x > 0, on a $\mathcal{L}(\operatorname{sinc})(x) = \frac{\pi}{2} - \arctan x$. On fait tendre x vers 0; avec le fait admis, on obtient $\int_0^{+\infty} \operatorname{sinc}(t) dt = \frac{\pi}{2}$.

smanne Conside Exo 2.

1. Soit $x \in \mathbb{R}$. Par la formule du binôme de Newton, on a

$$P_n(x) = \sum_{k=0}^{2n+1} {2n+1 \choose k} \left(x^k i^{2n+1-k} - x^k (-i)^{2n+1-k} \right).$$

Pour k impair, 2n + 1 - k est pair de sorte que $(-i)^{2n+1-k}$ vaut i^{2n+1-k} . Donc :

$$P_n(x) = \sum_{\substack{k=0\\k \text{ pair}}}^{2n+1} 2\binom{2n+1}{k} x^k i^{2n+1-k}.$$

Par le changement de variable l = 2k, on obtient :

$$P_n(x) = 2i \sum_{l=0}^{n} {2n+1 \choose 2l} x^{2l} i^{2(n-l)} = 2i \sum_{l=0}^{n} {2n+1 \choose 2l} x^{2l} (-1)^{n-l}.$$

En posant, pour tout x réel, $Q_n(x) = 2i\sum_{k=0}^n \binom{2n+1}{2k} x^k (-1)^{n-k}$, on a bien

$$\forall x \in \mathbb{R}, Q_n(x^2) = P_n(x).$$

2. On a
$$q_n = 2i \binom{2n+1}{2n} = 2i(2n+1)$$
 et
$$q_{n-1} = -2i \binom{2n+1}{2n-2} = -2i \binom{2n+1}{3} = -2i \frac{(2n+1)(2n)(2n-1)}{6}.$$

3. Soit $x \in \mathbb{R}$. On a

$$P_{n}(x) = 0 \iff (x+i)^{2n+1} = (x-i)^{2n+1}$$

$$\iff \left(\frac{x+i}{x-i}\right)^{2n+1} = 1$$

$$\iff \exists k \in [0, 2n], \frac{x+i}{x-i} = e^{\frac{2ik\pi}{2n+1}}$$

$$\iff \exists k \in [1, 2n], x = -i\frac{1+e^{\frac{2ik\pi}{2n+1}}}{1-e^{\frac{2ik\pi}{2n+1}}}$$

$$\iff \exists k \in [1, 2n], x = -i\frac{e^{\frac{ik\pi}{2n+1}}}{e^{\frac{ik\pi}{2n+1}}} \frac{2\cos(\frac{k\pi}{2n+1})}{-2i\sin(\frac{k\pi}{2n+1})}$$

$$\iff \exists k \in [1, 2n], x = \cot(\frac{k\pi}{2n+1}).$$

(On passe de $k \in [0, 2n]$ à $k \in [1, 2n]$ car $\frac{x+i}{x-i}$ ne peut pas valoir 1.)

Pour tout $k \in [1, 2n]$, notons $x_k = \cot(\frac{k\pi}{2n+1})$. Comme la fonction cotan est injective sur $]0, \pi[$, les x_k sont distincts. On a bien trouvé (les) 2n racines réelles distinctes de P_n .

4. Pour tout $k \in [1, 2n]$, on a avec les notations précédentes :

$$Q_n(x_k^2) = P_n(x_k) = 0.$$

Donc, les réels x_k^2 sont des racines réelles de Q_n . Cependant, des formules $\cos(\pi - x) = -\cos x$ et $\sin(\pi - x) = \sin x$ (valables pour $x \in \mathbb{R}$), on déduit aisément que $\cot(\pi - x) = -\cot x$ (là où la formule a un sens). Pour $k \in [1, n]$, on a $\frac{k\pi}{2n+1} = \pi - \frac{(2n+1-k)\pi}{2n+1}$. Donc, pour tout $k \in [1, n]$:

$$x_k^2 = x_{2n+1-k}^2.$$

Enfin, les réels x_1^2, \ldots, x_n^2 sont deux à deux distincts (car x_1, \ldots, x_n sont deux à deux distincts et positifs).

Finalement, x_1^2, \ldots, x_n^2 sont (les) n racines réelles distinctes de Q_n .

5. On applique la relation donnée au polynôme Q_n . On a donc :

$$\sum_{k=1}^{n} x_k^2 = -\frac{q_{n-1}}{q_n}.$$

Or, $-\frac{q_{n-1}}{q_n} = \frac{2n(2n-1)}{6}$. On a donc :

$$\sum_{k=1}^{n} \cot^2(\frac{k\pi}{2n+1}) = \frac{2n(2n-1)}{6}.$$

6. Soit $x \in]0,\pi/2[$. On commence par remarquer que les inégalités à prouver sont équivalentes à

$$\frac{1}{\tan^2 x} < \frac{1}{x^2} < \frac{1}{\sin^2 x}.$$

Par décroissance stricte de la fonction inverse sur \mathbb{R}_+^* , cela revient à montrer :

$$\tan^2 x > x^2 > \sin^2 x.$$

Par croissance stricte de la fonction carrée sur \mathbb{R}_+ , c'est encore équivalent à

$$\tan x > x > \sin x$$
.

Sur $]0, \pi/2[$, on pose $f(x) = x - \tan x$ et $g(x) = x - \sin x$. On a, pour $x \in [0, \pi/2[$, $f'(x) = 1 - (1 + \tan^2 x) \le 0$ (et ne s'annule qu'en 0) et $g'(x) = 1 - \cos x \ge 0$ (et ne s'annule qu'en 0). Donc, f est strictement décroissante sur $[0, \pi/2[$ et g y est strictement croissante.

Donc, pour tout $x \in]0, \pi/2[$,

$$f(x) < f(0) = 0 = g(0) < g(x).$$

Ce qui est équivalent à $\tan x > x > \sin x$.

7. Soit $n \in \mathbb{N}$. Pour tout $k \in [1, n]$, on a $\frac{k\pi}{2n+1} \in]0, \pi/2[$. Donc, en sommant les inégalités précédentes entre 1 et n:

$$\sum_{k=1}^{n} \cot^{2}(\frac{k\pi}{2n+1}) < \sum_{k=1}^{n} \frac{(2n+1)^{2}}{k^{2}\pi^{2}} < 1 + \sum_{k=1}^{n} \cot^{2}(\frac{k\pi}{2n+1}).$$

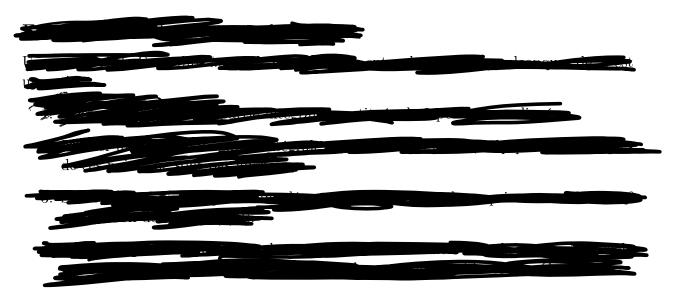
En reportant les valeurs trouvées pour les sommes et en simplifiant :

$$\pi^2 \frac{2n(2n-1)}{6(2n+1)^2} < \sum_{k=1}^n \frac{1}{k^2} < \frac{\pi^2}{(2n+1)^2} + \pi^2 \frac{2n(2n-1)}{6(2n+1)^2}.$$

La fraction $\frac{2n(2n-1)}{6(2n+1)^2}$ tend vers $\frac{4}{6\times 4}=\frac{1}{6}$ quand n tend vers l'infini.

Donc les membres de gauche et de droite tendent tous deux vers $\frac{\pi^2}{6}$. Par le théorème des gendarmes, on a donc

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}.$$



Comigé Exo 3

(a) Soit $k \in [0, 2n]$. Une récurrence rapide permet d'affirmer que

$$g_n^{(k)}: x \mapsto \frac{n!}{(n-k)!} x^{n-k} \text{ et } h_n^{(k)}: x \mapsto (-b)^k \frac{n!}{(n-k)!} (a-bx)^{n-k}$$

si $k \leq n.$ Et si k > n, alors $g_n^{(k)}$ et $h_n^{(k)}$ sont nulles. On en déduit :

- Si $k \in [0, n]$, $g_n^{(k)}(0) = h_n^{(k)}(\pi) = 0$; $g_n^{(k)}(\pi) = \frac{n!}{(n-k)!} \pi^{n-k}$; $h_n^{(k)}(0) = 0$ $\frac{n!}{(n-k)!}(-b)^k a^{n-k}.$
- Si k=n, $g_n^{(n)}(0)=g_n^{(n)}(\pi)=n!$ et $h_n^{(n)}(0)=h_n^{(n)}(\pi)=(-b)^n n!$ Si k>n, $g_n^{(k)}$ et $h_n^{(k)}$ sont nulles.
- (b) Soit $k \in [0, 2n]$. On applique la formule de Leibniz :

$$\forall x \in [0, \pi], f_n^{(k)}(x) = \frac{1}{n!} \sum_{l=0}^k \binom{k}{l} g_n^{(l)}(x) h_n^{(k-l)}(x).$$

D'après la question précédente, toutes les dérivées de g_n sont nulles en 0, sauf $g_n^{(n)}(0) = n!$. Ainsi, si k < n, $f_n^{(k)}(0) = 0$. Et si $k \ge n$,

$$f_n^{(k)}(0) = \frac{1}{n!} \binom{k}{n} g_n^{(n)}(0) h_n^{(k-n)}(0)$$

$$= \frac{1}{n!} \binom{k}{n} n! \frac{n!}{(2n-k)!} (-b)^{k-n} a^{2n-k}$$

$$= \binom{k}{n} \frac{n!}{(2n-k)!} (-b)^{k-n} a^{2n-k} \in \mathbb{Z}.$$

De même, si k < n, $g_n^{(k)}(\pi) = 0$ et si $k \ge n$,

$$f_n^{(k)}(\pi) = \frac{1}{n!} \binom{k}{k-n} g_n^{(k-n)}(\pi) h_n^{(n)}(\pi)$$

$$= \frac{1}{n!} \binom{k}{k-n} \frac{n!}{(2n-k)!} \pi^{2n-k} (-b)^n n!$$

$$= \binom{k}{k-n} \frac{n!}{(2n-k)!} a^{2n-k} (-1)^n b^{k-n} \in \mathbb{Z}.$$

(a) Soit $n \in \mathbb{N}^*$. On a

$$\frac{x^n}{n!} = \prod_{k=1}^n \frac{x}{k}.$$

Soit $N \in \mathbb{N}^*$ tel que $N \ge 2x$. Alors, pour tout $n \ge N$:

$$\frac{x^n}{n!} = \prod_{k=1}^{N-1} \frac{x}{k} \times \prod_{k=N}^n \frac{x}{k} \le \prod_{k=1}^{N-1} \frac{x}{k} \times \left(\frac{1}{2}\right)^{n-N+1}.$$

Ainsi, la suite positive $\left(\frac{x^n}{n!}\right)$ est majorée par une suite géométrique de raison 1/2: elle tend donc vers 0

(b) Par un calcul rapide de dérivée, on a que $x\mapsto x(a-bx)$ atteint son maximum en $x = \frac{a}{2b} = \pi/2$. Ainsi,

$$\forall x \in [0, \pi], 0 \le f_n(x) \le \frac{1}{n!} \left(\frac{a\pi}{4}\right)^n.$$

Comme de plus, $0 \le \sin \le 1$ entre 0 et π , la propriété de croissance de l'intégrale donne:

$$0 \le A_n \le \int_0^{\pi} \left(\frac{a\pi}{4}\right)^n dx = \pi \left(\frac{a\pi}{4}\right)^n.$$

Par la question précédente et le théorème d'encadrement, on en déduit que (A_n) tend vers 0. En particulier, il existe $n \in \mathbb{N}^*$ tel que $A_n \in]0,1[$ (A_n est toujours strictement positive).

M On procède par intégration par parties successives : (en intégrant à gauche en dérivant à droite)

$$\int_{a}^{b} f^{(N)}g = [f^{(N-1)}(x)g(x)]_{a}^{b} - \int_{a}^{b} f^{(N-1)}g'$$

$$= [f^{(N-1)}(x)g(x)]_{a}^{b} - [f^{(N-2)}(x)g'(x)]_{a}^{b} + \int_{a}^{b} f^{(N-2)}g''$$

$$= \dots$$

$$\int_{a}^{b} f^{(N)}g = \sum_{k=0}^{N-1} (-1)^{k} [f^{(N-k-1)}(x)g^{(k)}(x)]_{a}^{b} + (-1)^{N} \int_{a}^{b} fg^{(N)}.$$

Pour une rédaction plus propre : procéder par récurrence sur le nombre d'intégrations par parties réalisées.

On applique la formule précédente avec les fonctions f_n , sin, entre 0 et π . On prend N=2n+1 et on note h une fonction telle que n (ainsi h est égal à $\pm \cos$ ou $\pm \sin$). On a donc :

$$A_n = \int_0^{\pi} H^{(N)}(x) f_n(x) dx$$

$$A_n = \sum_{k=0}^{N-1} [H^{(N-k-1)}(x) f_n^{(k)}(x)]_0^{\pi} + (-1)^N \int_0^{\pi} H(x) f_n^{(N)}(x) dx$$

Comme N=2n+1 et que f_n est une fonction polynomiale de degré 2n, l'intégrale de droite est nulle. De plus, on a montré que $f_n^{(k)}$ prenait des valeurs entières en 0 et π pour tout $k \in [0,2n]$. Comme chaque dérivée $H^{(N-k-1)}$ vaut $\pm \cos$ ou $\pm \sin$, chacune prend aussi des valeus entières en 0 et π . Donc, les crochets sont entiers.

Finalement, $A_n \in \mathbb{Z}$, pour tout $n \in \mathbb{N}^*$.

D'après la question précédente, A_n est entier pour tout $n \in \mathbb{N}^*$. Mais d'après 2.b), il existe $n \in \mathbb{N}^*$ tel que $A_n \in]0,1[$. C'est absurde.

Donc π est irrationnel.

