DS 2 de mathématiques

Durée: 4h.

- Les calculatrices et autres technologies sont interdites.
- Une attention particulière sera portée à la qualité de la rédaction et à la rigueur du raisonnement. La copie doit être lisible, les pages numérotées, les calculs suffisamment détaillés, les résultats mis en valeur...
- Les 3 exercices et le problème sont indépendants et peuvent être traités dans un ordre quelconque.
- Si vous repérez une possible erreur d'énoncé, vous êtes invité(e) à venir le signaler.

1 Contrôle technique

- 1. Déterminer la valeur de $\int_4^9 \frac{\ln(\sqrt{x}-1)}{\sqrt{x}} dx$.
- 2. Une formule avec arcsin.
 - (a) Soit $x \in [0,1]$. Montrer que $\sin(2\arcsin(\sqrt{x}) \pi/2)$ est bien définie, puis simplifier cette expression. En déduire que $\arcsin(\sqrt{x}) = \frac{\pi}{4} + \frac{1}{2}\arcsin(2x-1)$.
 - (b) Retrouver cette formule par une autre méthode.

3. Fonction de Lambert.

(a) On définit une fonction f de $[-1, +\infty[$ dans \mathbb{R} par $f(t) = te^t$. Montrer que f est une bijection de $[-1, +\infty[$ dans $[-1/e, +\infty[$.

On note $W: [-1/e, +\infty[\to [-1, +\infty[$ la bijection réciproque de f.

(b) Montrer que W est dérivable sur] $-1/e, +\infty$ [et que

$$\forall x \in]-1/e, +\infty[, W'(x) = \frac{1}{x + e^{W(x)}}.$$

2 Un autre calcul de $\zeta(2)$

Soit $n \in \mathbb{N}^*$. On note P_n l'application polynomiale définie sur \mathbb{R} par

$$P_n(x) = (x+i)^{2n+1} - (x-i)^{2n+1}.$$

1. Montrer qu'il existe une application polynomiale Q_n de degré n telle que

$$\forall x \in \mathbb{R}, P_n(x) = Q_n(x^2).$$

- 2. On écrit Q_n sous la forme $Q_n = \sum_{k=0}^n q_k X^k$. Déterminer q_n et q_{n-1} .
- 3. Montrer que P_n admet 2n racines réelles distinctes. On exprimera ces racines comme des cotangentes d'angles dans $]0,\pi[$.
- 4. En déduire que Q_n admet n racines réelles distinctes.
- 5. Montrer que $\sum_{k=1}^{n} \cot^2 \left(\frac{k\pi}{2n+1} \right) = \frac{n(2n-1)}{3}.$

On admet que si un polynôme $P = \sum_{k=0}^{d} a_k X^k$ de degré d a d racines distinctes

$$z_1, \dots, z_d, \ alors \sum_{k=1}^d z_k = -\frac{a_{d-1}}{a_d}.$$

- 6. Montrer que $\forall x \in]0, \pi/2[, \cot^2(x) < \frac{1}{x^2} < 1 + \cot^2(x).$
- 7. En déduire la valeur de $\zeta(2) = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2}$.

3 π est irrationnel

Rappel de notation. Si f est une fonction de classe \mathcal{C}^{∞} (indéfiniment dérivable) et si $k \in \mathbb{N}$, on note $f^{(k)}$ la dérivée d'ordre k de f: $f^{(0)} = f$; $f^{(1)} = f'$; $f^{(2)} = (f')'$, etc.

On cherche à montrer que π est irrationnel. On raisonne par l'absurde en supposant que π s'écrit $\pi = \frac{a}{b}$ avec $a, b \in \mathbb{N}^*$. Pour tout $n \in \mathbb{N}^*$, on note f_n la fonction définie sur $[0, \pi]$ par $f_n(x) = \frac{x^n(a-bx)^n}{n!}$.

1. Étude des dérivées de f_n . Soit $n \in \mathbb{N}^*$, soit $k \in [0, 2n]$.

- (a) Déterminer les valeurs en 0 et en π de $g_n^{(k)}$ et $h_n^{(k)}$, où $g_n: x \mapsto x^n$ et $h_n: x \mapsto (a-bx)^n$.
- (b) En déduire que $f_n^{(k)}$ prend des valeurs entières en 0 et π .

 On rappelle la formule de Leibniz. Si f et g sont des fonctions de classe \mathcal{C}^{∞} et $si \ n \in \mathbb{N}, \ (fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$.
- 2. Estimation d'une intégrale. Pour tout $n \in \mathbb{N}^*$, on note $A_n = \int_0^{\pi} f_n(x) \sin(x) dx$.
 - (a) Montrer que pour tout $x \in \mathbb{R}_+^*$, la suite $\left(\frac{x^n}{n!}\right)_{n \in \mathbb{N}}$ tend vers 0.
 - (b) En déduire qu'il existe $N \in \mathbb{N}^*$ tel que $A_N \in]0,1[$.
- 3. Conclusion. Soit $n \in \mathbb{N}^*$. En utilisant des intégrations par parties successives, montrer que $A_n \in \mathbb{N}$. Conclure.

4 Problème – Intégrales impropres et transformation de Laplace

Soit I un intervalle de la forme $[a,+\infty[$, où $a\in\mathbb{R}$; soit f une continue de I dans \mathbb{R} . Si $\int_a^X f(t)dt$ a une limite finie quand $X\to+\infty$, on note $\int_a^{+\infty} f(t)dt$ cette limite et on dit que f admet une intégrale sur I. On note $\mathcal{R}(I)$ l'ensemble des fonctions ayant une intégrale sur I.

Si f est positive sur I, on admet que $f \in \mathcal{R}(I)$ ssi il existe M > 0 tel que, pour tout $X \in I$, $\int_a^X f(t)dt \leq M$.

4.1 Propriétés de $\mathcal{R}(I)$

1. Soient $f, g \in \mathcal{R}(I)$, soient λ et μ deux réels. Montrer que $\lambda f + \mu g \in \mathcal{R}(I)$ et que

$$\int_{a}^{+\infty} \left(\lambda f(t) + \mu g(t)\right) dt = \lambda \int_{a}^{+\infty} f(t) dt + \mu \int_{a}^{+\infty} g(t) dt.$$

2. Soit f une fonction continue sur $I = \mathbb{R}_+$, soit a > 0. On note $J = [a, +\infty[$. Montrer que $f \in \mathcal{R}(I)$ ssi $f_{|J} \in \mathcal{R}(J)$ et que

$$\int_0^{+\infty} f(t)dt = \int_0^a f(t)dt + \int_a^{+\infty} f(t)dt.$$

- 3. Pour tout $\alpha > 0$, on note f_{α} la fonction définie sur $I = [1, +\infty[$ par $f_{\alpha}(t) = \frac{1}{t^{\alpha}}]$. Montrer que $f_{\alpha} \in \mathcal{R}(I)$ ssi $\alpha > 1$. Préciser la valeur de $\int_{1}^{+\infty} \frac{dt}{t^{\alpha}}$ quand $\alpha > 1$.
- 4. Soit f une fonction continue sur $I = [a, +\infty[$ telle que $|f| \in \mathcal{R}(I)$. On cherche à montrer que $f \in \mathcal{R}(I)$.
 - (a) On définit f_+ et f_- sur I par $f_+(t) = \max(0, f(t))$ et $f_-(t) = \max(0, -f(t))$. Exprimer |f(t)| et f(t) en fonction de $f_+(t)$ et $f_-(t)$, pour tout t dans I.
 - (b) En déduire que f_+ et f_- sont dans $\mathcal{R}(I)$, puis que $f \in \mathcal{R}(I)$.

4.2 Transformation de Laplace

Soit f une fonction continue sur \mathbb{R}_+ . Pour tout x > 0, on note g_x la fonction définie sur \mathbb{R}_+ par $g_x(t) = f(t)e^{-xt}$. On dit que f admet une transformée de Laplace si, pour tout x > 0, $g_x \in \mathcal{R}(I)$. Dans ce cas, on note $\mathcal{L}(f)$ la fonction définie sur \mathbb{R}_+^* par

$$\mathcal{L}(f)(x) = \int_0^{+\infty} f(t)e^{-xt}dt.$$

On note $\mathcal S$ l'ensemble des fonctions admettant une transformée de Laplace.

- 5. On note 1 la fonction constante égale à 1. Montrer que $\mathbb{1} \in \mathcal{S}$ et calculer $\mathcal{L}(\mathbb{1})$.
- 6. Montrer que si f est une fonction continue bornée sur \mathbb{R}_+ , alors $f \in \mathcal{S}$.
- 7. Soient x, X > 0. Calculer $\int_0^X \sin(t)e^{-xt}dt$. En déduire que $\mathcal{L}(\sin)(x) = \frac{1}{1+x^2}$.
- 8. **Dérivée** de $\mathcal{L}(f)$. Soit f une fonction continue et bornée sur \mathbb{R}_+ . On définit g sur \mathbb{R}_+ par g(t) = tf(t). On souhaite montrer que $\mathcal{L}(f)$ est dérivable sur \mathbb{R}_+^* et que $\mathcal{L}(f)' = -\mathcal{L}(g)$.
 - (a) Montrer que $g \in \mathcal{S}$.
 - (b) Pour tout $x\in\mathbb{R}$, on définit $E(x)=\int_0^1(1-u)e^{xu}du$. Montrer que $0\leq E(x)\leq e^{|x|}$ et que $e^x=1+x+x^2E(x)$.
 - (c) Soit x > 0, soit h un réel tel que |h| < x. Montrer que

$$\frac{\mathcal{L}(f)(x+h) - \mathcal{L}(f)(x)}{h} + \mathcal{L}(g)(x) = h \int_0^{+\infty} t^2 f(t) e^{-xt} E(-ht) dt.$$

(d) En déduire que $\mathcal{L}(f)$ est dérivable en x et que $\mathcal{L}(f)'(x) = -\mathcal{L}(g)(x)$.

4.3 Calcul de l'intégrale de Dirichlet

On définit la fonction sinc sur $I = \mathbb{R}_+$ par $\operatorname{sinc}(t) = \frac{\sin t}{t}$ si $t \neq 0$ et $\operatorname{sinc}(0) = 1$.

- 9. Montrer que sinc est continue et que sinc $\in \mathcal{S}$.
- 10. Montrer que sinc $\in \mathcal{R}(I)$.

 On pourra utiliser une intégration par parties sur un intervalle [1, X], où X > 1.
- 11. Montrer qu'il existe $C \in \mathbb{R}$ tel que, pour tout x > 0, $\mathcal{L}(\text{sinc})(x) = C \arctan x$.
- 12. Montrer que $\mathcal{L}(\operatorname{sinc})(x)$ a une limite nulle en $+\infty$. En déduire la valeur de C.

On admet que $\mathcal{L}(\operatorname{sinc})(x) \to \int_0^{+\infty} \operatorname{sinc}(t) dt$, quand $x \to 0$.

13. Déterminer la valeur de $\int_0^{+\infty} \operatorname{sinc}(t) dt$.