DM 6 - Ensembles dénombrables

1 $\overline{\mathbb{Q}}$ est dénombrable

Un ensemble E est infini dénombrable s'il existe une bjection de \mathbb{N} dans E. Un ensemble E est dénombrable s'il est fini ou infini dénombrable.

On suppose connu (cf. TD) le fait que \mathbb{Z} et \mathbb{N}^2 sont infinis dénombrables.

- 1. Montrer que toute partie de ℕ est dénombrable.
- 2. En déduire qu'une partie d'un ensemble dénombrable est dénombrable.
- 3. Montrer que Q est dénombrable.
- 4. Montrer que E est dénombrable ssi il existe une surjection de \mathbb{N} dans E.
- 5. Montrer que pour tout $k \in \mathbb{N}^*$, \mathbb{N}^k est infini dénombrable.
- 6. Soient E_1, \ldots, E_n des ensembles dénombrables. Montrer que $E_1 \times \cdots \times E_n$ est dénombrable.
- 7. Soient A un ensemble dénombrable et $(E_a)_{a \in A}$ une famille d'ensemble dénombrables. Montrer que $E = \bigcup_{a \in A} E_a$ est dénombrable.

Un nombre complexe z est *algébrique* s'il est racine d'un polynôme à coefficients rationnels. On note $\overline{\mathbb{Q}}$ l'ensemble des nombres algébriques.

8. Montrer que $\overline{\mathbb{Q}}$ est dénombrable.

2 \mathbb{R} n'est pas dénombrable

On souhaite montrer que l'ensemble des nombres réels n'est pas dénombrable. On note

• \mathcal{S} l'ensemble des suites $u: \mathbb{N}^* \to [0,9]$ qui ne sont pas stationnaires en 9 :

$$\forall N \in \mathbb{N}, \exists n \geq N : u_n \neq 9.$$

- f l'application de $\mathscr S$ dans [0,1[définie par : $\forall u \in \mathscr S, f(u) = \lim_{N \to +\infty} \sum_{n=1}^N \frac{u_n}{10^n}.$
- 1. Montrer que f est bien définie.

Soient u et v deux suites distinctes dans \mathscr{S} . On note $k \in \mathbb{N}^*$ le plus petit indice tel que $u_k \neq v_k$. Par symétrie, on suppose $u_k < v_k$. On note $p \in \mathbb{N}^*$ un indice tel que p > k et $u_p \neq 9$.

2. Soit
$$N \ge p$$
. Montrer que $\sum_{n=1}^{N} \frac{v_n}{10^n} - \sum_{n=1}^{N} \frac{u_n}{10^n} \ge \frac{1}{10^p} + \frac{1}{10^N}$.

3. En déduire que f est injective.

On se donne, pour tout $k \in \mathbb{N}$, une suite u^k dans \mathscr{S} .

- 4. Construire une suite v dans $\mathscr S$ distincte de tous les u^k .
- 5. En déduire que $\mathscr S$ et $\mathbb R$ ne sont pas dénombrables.

Remarques.

- Il n'est pas difficile de montrer que f est une bijection de $\mathcal S$ dans [0,1[.
- Avec un peu plus de travail, on montre que \mathbb{R} et $\mathscr{P}(\mathbb{N})$ sont en bijection.
- L'hypothèse du continu affirme que tout ensemble *X* tel que N ⊂ *X* ⊂ R est infini dénombrable ou en bijection avec R. En 1963, le mathématicien Paul Cohen a démontré que l'hypothèse du continu et l'axiome du choix sont indécidables : il est impossible de démontrer, à partir des axiomes de la théorie des ensembles, que ces assertions sont vraies ou fausses.

On fera attention à bien distinguer exposant et indice. Le n-ème terme de la suite u^k s'écrit u_n^k .