DM 6 - Ensembles dénombrables

1 $\overline{\mathbb{Q}}$ est dénombrable

- 1. Soit A une partie infinie de \mathbb{N} (les parties finies sont dénombrables par définition). Par récurrence forte, on construit une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A par :
 - $a_0 = \min(A)$.
 - Soit $k \in \mathbb{N}$ tel que $a_0, ..., a_k$ ont été définis. On définit $a_{k+1} = \min(A \{a_0, ..., a_k\})$.

Cette suite est bien définie car toute partie non vide de $\mathbb N$ admet un plus petit élément et que pour tout $k \in \mathbb N$, $A - \{a_0, \ldots, a_k\}$ est non vide (car A est infinie). De plus, la suite $(a_n)_{n \in \mathbb N}$ est strictement croissante par construction.

Notons $\psi: \mathbb{N} \to A$, $n \mapsto a_n$. Comme ψ est strictement croissante, elle est injective. Supposons par l'absurde que ψ n'est pas surjective. Alors, on peut considérer le plus petit entier $a \in A$, qui n'est pas dans l'image de ψ . En particulier, $a \neq a_0$. L'ensemble $\{k \in \mathbb{N} \mid a_k < a\}$ n'est pas vide (il contient 0) et il est fini (comme la suite $(a_n)_{n \in \mathbb{N}}$ est strictement croissante, seul un nombre fini de a_k peuvent être inférieurs à a). Il existe donc un unique indice $k \in \mathbb{N}$ tel que $a_k < a < a_{k+1}$. Alors $a < a_j$, pour tout $j \geq k+1$ et $a \leq b$, pour tout $b \in A - \operatorname{Im}(\psi)$ (par hypothèse). Donc $a = \min(A - \{a_0, \dots, a_k\})$; et donc $a = a_{k+1}$. C'est absurde.

Donc ψ est surjective ; c'est donc une bijection. Donc, A est dénombrable.

2. Soit E un ensemble dénombrable, soit F une partie de E. Si E est fini, alors F aussi et donc F est dénombrable ; on suppose donc E infini dénombrable et F partie infinie de E. Notons $f:E\to\mathbb{N}$ une bijection. Alors f(F) est une partie infinie de \mathbb{N} (l'image par une bijection d'un ensemble infini est un ensemble infini), donc f(F) est infini dénombrable. Notons $\psi:f(F)\to\mathbb{N}$ une bijection.

De plus, $f_{|F}: F \to f(F)$ est aussi une bijection. Donc $\psi \circ f_{|F}: F \to \mathbb{N}$ est une bijection et F est infini dénombrable.

3. Soit q un nombre rationnel. Il existe un unique couple $(a_q,b_q)\in\mathbb{Z}\times\mathbb{N}^*$ tel que $q=\frac{a_q}{b_q}$ et tels que a_q et b_q sont premiers entre eux. L'application $\iota:\mathbb{Q}\to\mathbb{Z}\times\mathbb{N}^*$, $q\mapsto(a_q,b_q)$ est une injection puisque le couple (a_q,b_q) détermine q. Ainsi \mathbb{Q} est équipotent à $\iota(\mathbb{Q})$, partie infinie de $\mathbb{Z}\times\mathbb{N}^*$.

Pour conclure, il suffit de montrer que $\mathbb{Z} \times \mathbb{N}^*$ est infini dénombrable. Notons $f_1 : \mathbb{Z} \to \mathbb{N}$ une bijection et $f_2 : \mathbb{N}^* \to \mathbb{N}$ une bijection (p. ex. $f_2(n) = n - 1$). Alors, on vérifie immédiatement que l'application $\tau : \mathbb{Z} \times \mathbb{N}^* \to \mathbb{N}^2$, $(n_1, n_2) \mapsto (f_1(n_1), f_2(n_2))$ est une bijection. Donc $\mathbb{Z} \times \mathbb{N}^*$ est équipotent à \mathbb{N}^2 , donc est infini dénombrable. Donc $\iota(\mathbb{Q})$ est infini dénombrable. Donc \mathbb{Q} aussi.

4. Soit E un ensemble dénombrable. S'il est fini, on note $a_0, ..., a_{N-1}$ ses éléments et on considère par exemple l'application $f : \mathbb{N} \to E, k \mapsto a_{r(k)}$, où r(k) est le reste de k dans la division

euclidienne par n. Alors, f est une surjection de \mathbb{N} dans E. Si E est infini, il existe par définition une bijection de \mathbb{N} dans E, en particulier une surjection de \mathbb{N} dans E.

Réciproquement, soit $f: \mathbb{N} \to E$ une surjection. Pour tout élément x de E, on note g(x) le plus petit antécédent de x par f (on prend le plus petit pour ne pas avoir de choix à faire). Notons $A = \{g(x), x \in E\}$; c'est une partie de \mathbb{N} , donc un ensemble dénombrable. On vérifie immédiatement que $f|_A: A \to E$ est une bijection ; comme A est dénombrable ; E aussi.

- 5. Montrons par récurrence que, pour tout $n \ge 1$, \mathbb{N}^n est dénombrable.
 - Le cas n = 1 est évident ; le cas n = 2 est supposé connu et on note f_2 une surjection de \mathbb{N} dans \mathbb{N}^2 .
 - Soit $n \ge 2$ tel que \mathbb{N}^n est dénombrable. Il existe donc une surjection $f_n : \mathbb{N} \to \mathbb{N}^n$. L'application $(f_n, \mathrm{id}_{\mathbb{N}}) : \mathbb{N}^2 \to \mathbb{N}^{n+1}$, $(a, b) \mapsto (f_n(a), b)$ (on identifie \mathbb{N}^{n+1} et $\mathbb{N}^n \times \mathbb{N}$) est surjective. En composant avec une surjection de \mathbb{N} dans \mathbb{N}^2 , on construit ainsi une surjection de \mathbb{N} dans \mathbb{N}^{n+1} . Donc \mathbb{N}^{n+1} est dénombrable.

Ceci conclut la récurrence.

6. Soient $E_1, ..., E_n$ des ensembles dénombrables. Par hypothèse, il existe des surjections f_i de \mathbb{N} dans E_i , pour $i \in [1, n]$. On les utilise pour construire une surjection $f : \mathbb{N}^n \to E_1 \times \cdots \times E_n$, définie par

$$f(a_1,...,a_n) = (f_1(a_1),...,f_n(a_n)).$$

En composant avec une surjection de \mathbb{N} dans \mathbb{N}^n , on construit ainsi une surjection de \mathbb{N} dans $E_1 \times \cdots \times E_n$. Donc cet ensemble est dénombrable.

7. Pour tout a, notons f_a une surjection de \mathbb{N} dans E_a . Notons g une surjection de \mathbb{N} dans A et notons h une surjection de \mathbb{N} dans \mathbb{N}^2 . On définit $\psi : \mathbb{N} \to E$ par

$$\psi(n) = f_{g(h_1(n))}(h_2(n)),$$

où on note $h(n) = (h_1(n), h_2(n)) \in \mathbb{N}^2$. Montrons que ψ est une surjection de \mathbb{N} dans E.

Soit $e \in E$. Alors il existe $a \in A$ tel que $e \in E_a$. Par surjectivité de g, on peut trouver $n_1 \in \mathbb{N}$ tel que $g(n_1) = a$. Par surjectivité de f_a , on peut trouver $n_2 \in \mathbb{N}$ tel que $f_a(n_2) = e$. On a donc $f_{g(n_1)}(n_2) = e$. Enfin, par surjectivité de h, on peut trouver $n \in \mathbb{N}$ tel que $h(n) = (n_1, n_2)$, ce qui revient à dire que $n_1 = h_1(n)$ et $n_2 = h_2(n)$. On a donc :

$$\psi(n) = f_{g(h_1(n))}(h_2(n)) = f_{g(n_1)}(n_2) = f_a(n_2) = e.$$

Ce qui montre la surjectivité de ψ , et donc la dénombrabilité de E.

8. Soit $d \in \mathbb{N}^*$. L'ensemble \mathcal{A}_d des polynômes à coefficients rationnels de degré inférieur à d est dénombrable. En effet, il est en bijection avec \mathbb{Q}^{d+1} (en considérant les coefficients du polynôme), qui est dénombrable car \mathbb{Q} l'est, et par la question précédente. Pour chaque $P \in \mathcal{A}_d$, on note R_P l'ensemble (fini) de ses racines. Alors $R_d = \bigcup_{P \in \mathcal{A}_d} R_P$ est dénombrable,

comme union dénombrable d'ensembles dénombrables.

L'ensemble $R = \bigcup_{n \in \mathbb{N}^*} R_d$ est lui aussi dénombrable (car \mathbb{N}^* et tous les R_d le sont). C'est

l'ensemble de toutes les racines de polynômes à coefficients rationnels, c'est-à-dire $\overline{\mathbb{Q}}$. Donc $\overline{\mathbb{Q}}$ est dénombrable.

2 \mathbb{R} n'est pas dénombrable

- 1. Soit $u \in \mathcal{S}$. Pour tout $N \ge 1$, on note $S_N = \sum_{n=1}^N \frac{u_n}{10^n}$. Comme pour tout $N \ge 1$, $S_{N+1} S_N = \frac{u_{n+1}}{10^{n+1}} \ge 0$, $(S_N)_{N \in \mathbb{N}}$ est croissante. De plus, comme pour tout $n \ge 1$, $u_n \le 9$, on a pour tout $N \in \mathbb{N}$, $S_N \le \sum_{n=1}^N \frac{9}{10^n} = \frac{9}{10} \frac{1 \frac{1}{10^N}}{1 \frac{1}{10}} = 1 10^{-N} < 1$. Donc, (S_N) est une suite croissante et majorée par 1, donc elle converge. Ceci montre que f(u) est bien défini, a priori dans [0,1]. On peut montrer (analogue à la question 2.) qu'on ne peut pas avoir f(u) = 1 (il faudrait que la suite u soit constante égale à 9, ce qui est exclu). On omet la vérification de ce point, non nécessaire pour la suite.
- 2. On coupe la somme en cinq.

$$\sum_{n=1}^{N} \frac{v_n}{10^n} - \sum_{n=1}^{N} \frac{u_n}{10^n} = \sum_{n=1}^{k-1} \frac{v_n - u_n}{10^n} + \frac{v_k - u_k}{10^k} + \sum_{n=k+1}^{p-1} \frac{v_n - u_n}{10^n} + \frac{v_p - u_p}{10^p} + \sum_{n=p+1}^{N} \frac{v_n - u_n}{10^n}.$$

- La première somme est nulle.
- $\bullet \ \frac{v_k u_k}{10^k} \ge \frac{1}{10^k}.$
- Pour tout $n \in [k+1, p-1]$, $v_n u_n \ge -9$. Donc, $\sum_{n=k+1}^{p-1} \frac{v_n u_n}{10^n} \ge \frac{-9}{10^{k+1}} \frac{1 \frac{1}{10^{p-k-1}}}{1 \frac{1}{10}} = \frac{1 \frac{1}{10^{p-k-1}}}{1 \frac{1}{10^{p-k-1}}} = \frac{1 \frac{1}{10^{p-k-1}}}{1 \frac{1}{10^{p-k-1}}}$

$$\frac{1}{10^{p-1}} - \frac{1}{10^k}$$

•
$$\frac{v_p - u_p}{10^p} \ge \frac{-8}{10^p}$$
.

• De même que pour la somme précédente, $\sum_{n=p+1}^{N} \frac{v_n - u_n}{10^n} \ge \frac{1}{10^N} - \frac{1}{10^p}$.

En sommant les inégalités, on obtient

$$\sum_{n=1}^N \frac{v_n}{10^n} - \sum_{n=1}^N \frac{u_n}{10^n} \ge \frac{1}{10^{p-1}} + \frac{-8}{10^p} + \frac{1}{10^N} - \frac{1}{10^p} = \frac{1}{10^p} + \frac{1}{10^N}.$$

3. Ainsi, pour tout $N \ge 1$, $\sum_{n=1}^N \frac{v_n}{10^n} - \sum_{n=1}^N \frac{u_n}{10^n} \ge \frac{1}{10^p}$. En passant à la limite quand N tend vers $+\infty$, on en déduit que $f(v) - f(u) \ge \frac{1}{10^p}$. En particulier, $f(u) \ne f(v)$.

Comme u et v sont deux suites distinctes de $\mathscr S$ quelconques, on a montré que f est injective.

4. Pour tout $n \in \mathbb{N}^*$, on note v_n un entier dans [0,8] distinct de u_n^n (par exemple, on peut prendre $v_n = 0$ si $u_n^n \neq 0$ et $v_n = 1$ si $u_n^n = 0$). Comme v_n ne vaut jamais 9, la suite (v_n) ne stationne pas en 9, donc $(v_n) \in \mathscr{S}$.

De plus, si $k \in \mathbb{N}$, les suites v et u^k sont distinctes. En effet, v_k et u_k^k diffèrent, par construction.

5. La question précédente montre qu'il n'existe pas de surjection de $\mathbb N$ dans $\mathscr S$. Donc, $\mathscr S$ n'est pas dénombrable. Comme il existe une injection de $\mathscr S$ dans $\mathbb R$, $\mathbb R$ n'est pas non plus dénombrable (s'il l'était, l'ensemble $f(\mathscr S)$ le serait aussi par la question 5 de l'exercice précédent ; comme cet ensemble est en bijection avec $\mathscr S$, $\mathscr S$ lui-même serait dénombrable).