Applications et relations

Applications

EXERCICE 1. $\bigcirc\bigcirc\bigcirc$ *Étude d'une application* Soit f l'application définie de \mathbb{R} dans \mathbb{R} par $f(x) = \frac{x}{1 + |x|}$.

- 1. Déterminer l'ensemble image Y de f.
- 2. Montrer que $f: \mathbb{R} \to Y$ est une bijection et exhiber sa bijection réciproque.

EXERCICE 2. $\bigcirc\bigcirc\bigcirc$ *Une homographie*

Soit f l'application définie de \mathbb{C}^* dans \mathbb{C} par $f(z) = z + \frac{1}{z}$.

- 1. Étudier l'injectivité et la surjectivité de f.
- 2. Déterminer $f(\mathbb{R}^*)$ et $f(\mathbb{U})$.

EXERCICE 3. $\bigcirc\bigcirc\bigcirc$ *Applications injectives et surjectives*

Déterminer si les applications suivantes sont injectives, surjectives, bijectives.

1.
$$\begin{cases} \mathbb{N} \to \mathbb{N} \\ n \mapsto n+1 \end{cases}$$

5.
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^3 \\ (x, y) \mapsto (y, 0, y - x) \end{cases}$$

5.
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^3 \\ (x,y) \mapsto (y,0,y-x); \end{cases}$$
 9.
$$\begin{cases} \mathbb{C}^2 \to \mathbb{C}^2 \\ (x,y) \mapsto (x+y,xy); \end{cases}$$

2.
$$\begin{cases} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n+1; \end{cases}$$

6.
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ z \mapsto z^2 + z + 1 \end{cases}$$

6.
$$\begin{cases} \mathbb{R} \to \mathbb{R} \\ z \mapsto z^2 + z + 1 \end{cases}$$
 10.
$$\begin{cases} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n + (-1)^n \end{cases}$$

3.
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x, y) \mapsto (y, x) \end{cases}$$

3.
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (y,x); \end{cases}$$
7.
$$\begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto z^2 + z + 1; \end{cases}$$
11.
$$\begin{cases} \mathbb{R}^{\mathbb{R}} \to \mathbb{R} \\ f \mapsto f(0); \end{cases}$$

11.
$$\begin{cases} \mathbb{R}^{\mathbb{R}} \to \mathbb{R} \\ f \mapsto f(0) \end{cases}$$

4.
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x, y) \mapsto 3y; \end{cases}$$

8.
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (x+y,xy); \end{cases}$$
 12.
$$\begin{cases} \mathscr{P}(\mathbb{R}) \to \mathscr{P}(\mathbb{R}_+) \\ X \mapsto X \cap \mathbb{R}_+. \end{cases}$$

12.
$$\begin{cases} \mathscr{P}(\mathbb{R}) \to \mathscr{P}(\mathbb{R}_+) \\ X \mapsto X \cap \mathbb{R}_+ \end{cases}$$

EXERCICE 4. $\mathbb{Q} \bigcirc \bigcirc$ *Bijection de* \mathbb{N} *dans* \mathbb{Z}

- 1. Construire une bijection de N dans l'ensemble des entiers naturels pairs (resp. impairs).
- 2. En déduire une bijection de \mathbb{N} dans \mathbb{Z} .

EXERCICE 5. \clubsuit – $\bullet \bigcirc \bigcirc$ $f \circ f \circ f = f$

Soit f une application d'un ensemble E dans lui-même, telle que $f \circ f \circ f = f$. Montrer que f est injective ssi f est surjective.

EXERCICE 6. — O Caractérisation de l'injectivité et de la surjectivité Soit $f: E \to F$ une application.

- 1. Montrer que f est injective ssi $\forall A \subset E, f^{-1}(f(A)) = A$.
- 2. Montrer que f est surjective ssi $\forall B \subset F, f(f^{-1}(B)) = B$.

EXERCICE 7. •• Lemme de factorisation

Soient $f: E \to F$ et $g: E \to G$ deux applications. Montrer qu'il existe $h: F \to G$ telle que $g = h \circ f$ ssi

$$\forall (x, y) \in E^2, (f(x) = f(y)) \Longrightarrow (g(x) = g(y)).$$

EXERCICE 8. \$\bigsep\$ - \bigsep\$ \(\tilde{\phi} \) \(\tilde{\phi} \) imorphismes et monomorphismes Soit $f: E \rightarrow F$ une application. On dit que

- f est un épimorphisme si pour tout ensemble G et pour toutes applications $g_1, g_2 : F \to G$, $(g_1 \circ f = g_2 \circ f) \Longrightarrow g_1 = g_2;$
- f est un monomorphisme si pour tout ensemble D et pour toutes applications $u_1, u_2 : D \rightarrow$ E, $(f \circ u_1 = f \circ u_2) \Longrightarrow u_1 = u_2$.

Montrer que f est un épimorphisme (resp. un monomorphisme) ssi f est surjective (resp. injective).

EXERCICE 9. \Diamond – $\bullet \bullet \bigcirc$ *Une application définie avec des ensembles* Soit E un ensemble, soient X et Y des parties de E. On considère l'application ϕ définie par

$$\phi: \left\{ \begin{array}{ccc} \mathscr{P}(E) & \to & \mathscr{P}(X) \times \mathscr{P}(Y) \\ A & \mapsto & \left(A \cap X, A \cap Y \right). \end{array} \right.$$

Déterminer une condition nécessaire et suffisante sur X et Y pour que ϕ soit injective. Même question, pour que ϕ soit surjective.

EXERCICE 10. \clubsuit/\diamondsuit – $\bullet \bullet \bigcirc$ *Application image réciproque*

Soit $f: E \to F$ une application. On considère l'application f^* définie par

$$f^*: \left\{ \begin{array}{ccc} \mathscr{P}(F) & \to & \mathscr{P}(E) \\ B & \mapsto & f^{-1}(B). \end{array} \right.$$

Déterminer une condition nécessaire et suffisante sur f, pour que f^* soit injective/surjective.

EXERCICE 11. \Diamond – $\bullet \bullet \bigcirc$ *Paires d'ensembles disjoints*

Soit *E* un ensemble. On note $\mathcal{D}_E = \{(A, B) \in \mathcal{P}(E)^2 \mid A \cap B = \emptyset\}.$ Exhiber une bijection entre \mathcal{D}_E et $\{0, 1, 2\}^E$.

EXERCICE 12. $\bullet \bullet \bigcirc$ *Injection de* \mathbb{N}^k *dans* \mathbb{N}

Soit $k \ge 1$ un entier.

En utilisant le théorème fondamental de l'arithmétique, construire une injection $\phi_k : \mathbb{N}^k \to \mathbb{N}$.

EXERCICE 13. lacktriangledown Output Ou

1. *A* et *B* tous deux finis?

3. A fini et B infini?

2. *A* et *B* tous deux infinis?

4. *A* infini et *B* fini ?

EXERCICE 14. \lozenge – $\bullet \bullet \bigcirc$ *Bijections explicites entre* \mathbb{N} *et* \mathbb{N}^2

- 1. On définit $\phi: \mathbb{N}^2 \to \mathbb{N}$ par $\phi(n, p) = \frac{1}{2}(n+p)(n+p+1) + p$. Montrer que ϕ est une bijection.
- 2. On définit $\psi: \mathbb{N}^2 \to \mathbb{N}$ par $\psi(n, p) = 2^n (2p+1) 1$. Montrer que ψ est une bijection.

EXERCICE 15. •• Caractérisation des ensembles infinis

Soit *E* un ensemble. Montrer que *E* est infini ssi pour toute application f de *E* dans *E*, il existe $\emptyset \subseteq A \subseteq E$ tel que $f(A) \subseteq A$.

EXERCICE 16. ♣/♦ – ●●● *Théorème de Cantor*

Soit E un ensemble. Montrer qu'il n'existe pas de surjection de E vers $\mathscr{P}(E)$.

EXERCICE 17. •• *Une application définie avec des sommes*

Soit $(w_n)_{n\in\mathbb{N}}$ une suite strictement croissante d'entiers strictement positifs. On note $\mathscr{P}_f(\mathbb{N})$ l'ensemble des parties finies de \mathbb{N} et on considère l'application $\psi: \left\{ \begin{array}{ccc} \mathscr{P}_f(\mathbb{N}) & \to & \mathbb{N} \\ A & \mapsto & \sum_{n\in A} w_n. \end{array} \right.$

1. Montrer que ψ est surjective ssi la condition suivante est satisfaite :

$$w_0 = 1$$
 et $\forall k \in \mathbb{N}, w_{k+1} \le w_0 + w_1 + \dots + w_k + 1$.

2. On suppose que ψ est surjective. Montrer qu'elle est alors bijective ssi $(w_n)_{n\in\mathbb{N}}=(2^n)_{n\in\mathbb{N}}$.

EXERCICE 18. \clubsuit/\diamondsuit – $\bullet \bullet \bullet$ *Points cycliques d'une permutation*

Soient E un ensemble, f une permutation de E. Un élément $x \in E$ est un point cyclique de f s'il existe $n \ge 1$ tel que $f^{(n)}(x) = x$. Existe-t-il une permutation de $\mathbb N$ sans point cyclique ?

2 Relations d'équivalence

EXERCICE 19. $\bigcirc\bigcirc\bigcirc$ *Des relations d'équivalence ?*

Les relations suivantes sont-elles des relations d'équivalence ?

1.
$$E = \mathbb{R}^{\mathbb{N}}$$
. $\forall u, v \in E, u \mathcal{R}_1 v \iff \exists N \in \mathbb{N}, \forall n \geq N, u_n = v_n$.

2.
$$E = (\mathbb{R}^*)^{\mathbb{N}}$$
. $\forall u, v \in E, u \mathcal{R}_2 v \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 1$.

3.
$$E = \mathcal{P}(\mathbb{R})$$
. $\forall X, Y \in E, X \mathcal{R}_3 Y \iff X \cap Y = \emptyset$.

4.
$$E = \mathcal{P}(\mathbb{R})$$
. $\forall X, Y \in E, X \mathcal{R}_4 Y \iff X \cap Y \neq \emptyset$.

5.
$$E = \mathbb{R}^n \ (n \ge 2). \ (x_1, ..., x_n) \mathcal{R}_5(y_1, ..., y_n) \iff \exists k \in [1, n], x_k = y_k.$$

EXERCICE 20. $\bigcirc\bigcirc\bigcirc$ *Tiré en arrière d'une relation d'équivalence*

Soit $f: E \to F$ une application, soit \mathcal{R} une relation d'équivalence sur F. On définit une relation \mathcal{S} sur E par $\forall x, x' \in E, x \mathcal{S} x' \iff f(x) \mathcal{R} f(x')$.

Montrer que \mathcal{S} est une relation d'équivalence sur E.

EXERCICE 21. ●○○ Alignement de points

On note *E* l'ensemble des points du plan et *O* l'origine du plan.

- 1. La relation \mathcal{R} définie par : $\forall P,Q \in E, P \mathcal{R} Q \iff$ les points O,P et Q sont alignés est-elle une relation d'équivalence sur E?
- 2. Même question en considérant la relation définie sur $E \{O\}$.

EXERCICE 22. •• Clôture transitive d'une relation

Soit \mathcal{R} une relation sur un ensemble E. On définit la clôture transitive \mathcal{R}^* de \mathcal{R} comme la relation suivante : $\forall x, y \in E, x \mathcal{R}^*$ y

$$\iff \exists n \in \mathbb{N}, \exists (x_0,\dots,x_n) \in E^{n+1}, (x=x_0) \land (\forall k \in \llbracket 0,n-1 \rrbracket, x_k \mathcal{R} x_{k+1}) \land (x_n=y).$$

Montrer que si \mathcal{R} est symétrique, alors \mathcal{R}^* est une relation d'équivalence.

EXERCICE 23. \lozenge – $\bullet \bullet \bigcirc$ *Une relations d'équivalence ensembliste* Soit *E* un ensemble, soit $A \subseteq E$. On définit une relation \mathscr{R} sur $\mathscr{P}(E)$ par

$$\forall X, Y \in \mathcal{P}(E), X \mathcal{R} Y \iff X \cup A = Y \cup A.$$

Montrer que \mathcal{R} est une relation d'équivalence. Donner une description des classes d'équivalence en identifiant dans chacune un élément simple.

EXERCICE 24. $\clubsuit/\diamondsuit - \bullet \bullet \bigcirc$ *Décomposition canonique d'une application* Soit $f: E \to F$ une application. On définit \mathscr{R} sur E par : $\forall x, y \in E, x \mathscr{R} y \iff f(x) = f(y)$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. On note E/\mathcal{R} l'ensemble quotient et $\pi: E \to E/\mathcal{R}$, la projection définie par $\pi(x) = \operatorname{cl}(x)$. Montrer qu'il existe une unique application $\overline{f}: E/\mathcal{R} \to F$ telle que $f = \overline{f} \circ \pi$.
- 3. Montrer que π est surjective et que \overline{f} est injective.

Ainsi, toute application f est la composition d'une surjection, suivie d'une injection.

4. Montrer que toute application f est aussi la composition d'une injection, suivie d'une surjection.

EXERCICE 25. ♣ – ●●● *Vers la notion de filtre*

Soit $\mathscr{F} \subset \mathscr{P}(\mathbb{R})$. On définit une relation \mathscr{R} sur $\mathbb{R}^{\mathbb{R}}$ par $\forall f, g \in \mathbb{R}^{\mathbb{R}}$, $f \mathscr{R} g \iff \exists A \in \mathscr{F}, f_{|A} = g_{|A}$.

1. Montrer que $\mathcal R$ est une relation d'équivalence ssi $\mathcal F$ vérifie :

$$\forall A, B \in \mathcal{F}, \exists C \in \mathcal{F}, C \subset A \cap B.$$

2. Soit $x \in \mathbb{R}$. On considère $\mathscr{F}_x = \{|x - \varepsilon, x + \varepsilon|, \varepsilon > 0\}$. Montrer que \mathscr{F}_x vérifie la condition précédente. Que dire de deux fonctions équivalentes sous \mathscr{R} dans ce cas ?

3 Relations d'ordre

EXERCICE 26. ●○○ *Relation avec des puissances*

On définit sur $\mathbb C$ la relation $\mathcal R$ définie par $\forall z, w \in \mathbb C, z\mathcal R$ $w \iff (\exists n \in \mathbb N, w = z^{2^n}).$

- 1. Est-ce une relation d'ordre sur \mathbb{C} ?
- 2. Même question en définissant la relation sur \mathbb{R} .
- 3. Donner un exemple de partie $A \subset \mathbb{R}$ à deux éléments qui ne soit pas majorée.

Exercice 27. • O Toute partie a un plus grand élément

Soit (E, \leq) un ensemble totalement ordonné. Montrer l'équivalence des conditions suivantes :

- (a) Toute partie non vide de *E* a un plus grand élément.
- (b) Toute suite croissante de *E* est constante à partir d'un certain rang.
- (c) Il n'existe aucune suite strictement croissante dans *E*.

EXERCICE 28. •• *Suites égales à partir d'un certain rang*

Sur l'ensemble $E = \mathbb{N}^{\mathbb{N}}$, on définit la relation d'équivalence ~ par

$$\forall u, v \in E, u \sim v \iff \exists N \in \mathbb{N}, \forall n \geq N, u_n = v_n.$$

- 1. Soient $f, g \in E$. Montrer que les conditions suivantes sont équivalentes :
 - (a) $\exists N \in \mathbb{N}, \forall n \ge N, f(n) \le g(n)$;
 - (b) $\forall f', g' \in E, (f \sim f') \land (g \sim g') \Longrightarrow (\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, f'(n) \leq g'(n)).$

Si $f,g \in E$ et si $\mathrm{cl}(f)$ et $\mathrm{cl}(g)$ sont les classes de f et g pour \sim , on écrira $\mathrm{cl}(f) \le \mathrm{cl}(g)$ si les conditions précédentes sont vérifiées.

- 2. Justifier qu'on définit bien une relation sur E/ ~ et que cette relation est une relation d'ordre.
- 3. Cet ordre est-il total?

EXERCICE 29. •• Borne supérieure de la somme de deux parties

Soient A et B deux parties non vides et majorées de \mathbb{R} . On pose $A+B=\{x+y,(x,y)\in A\times B\}$. Montrer que A+B a une borne supérieure et que $\sup(A+B)=\sup(A)+\sup(B)$.

EXERCICE 30. $\bullet \bullet \bigcirc$ *Bornes inférieure et supérieure*

- 1. On considère \mathbb{N}^* muni de la relation d'ordre $a \le b$ ssi a divise b. Les parties suivantes ontelles ont une borne inférieure ? une borne supérieure ?
 - (a) $A = \{8, 12\}$;
- (b) $B = \{2^n, n \in \mathbb{N}\}$;
- (c) $C = \{6, 10, 15\}.$
- 2. Soit E un ensemble. On munit $\mathcal{P}(E)$ de l'ordre donné par l'inclusion. Montrer que toute partie de $\mathcal{P}(E)$ admet une borne supérieure et une borne inférieure, que l'on explicitera.
- 3. On considère l'ensemble $\mathscr{S} = \{X \in \mathscr{P}(\mathbb{N}) \mid \forall x, x' \in X, x + x' \in X\}$ des parties de \mathbb{N} , stables par somme, muni de la relation d'inclusion.

5

Soient $X_1, X_2 \in \mathcal{S}$. Montrer que la partie $\{X_1, X_2\}$ a une borne supérieure et une borne inférieure, que l'on explicitera.

EXERCICE 31. \clubsuit/\diamondsuit – $\bullet \bullet \bullet$ *Point fixe pour une application croissante*

Soit E un ensemble, $\mathscr{P}(E)$ l'ensemble de ses parties, ordonné par l'inclusion. On suppose que $f: \mathscr{P}(E) \to \mathscr{P}(E)$ est une application croissante.

Montrer qu'il existe $X \in \mathcal{P}(E)$ tel que f(X) = X.

EXERCICE 32. •• Ensemble bien ordonné

Soit (E, \leq) un ensemble ordonné. On dit qu'il est bien ordonné (ou que l'ordre est un bon ordre) si toute partie non vide admet un minimum.

- 1. Donner un exemple d'ensemble bien ordonné.
- 2. Montrer qu'un bon ordre est total.
- 3. On suppose que (E, \leq) est bien ordonné. Montrer le principe de récurrence transfinie : si $A \subset E$ et si

$$\forall x \in E, ((\forall y \in E, y < x \implies y \in A) \implies x \in A)$$

alors A = E.

EXERCICE 33. •• • Relation d'ordre sur les relations d'équivalence

Soit E un ensemble, soit R_E l'ensemble des relations d'équivalence sur E. Si \mathcal{R} et \mathcal{S} sont deux relations d'équivalence sur E, on dit que \mathcal{R} est plus grossière que \mathcal{S} , et on note $\mathcal{S} \leq \mathcal{R}$ si

$$\forall x, y \in E, x \mathcal{S} y \Longrightarrow x \mathcal{R} y.$$

- 1. Pour $E = \mathbb{Z}$, des deux relations de congruence modulo 5 et 10, l'une est-elle plus grossière que l'autre ? Même question avec les relations de congruence modulo 3 et 7.
- 2. Montrer que \leq est une relation d'ordre sur R_E .
- 3. L'ensemble R_E a-t-il un minimum ? Si oui, le préciser.
- 4. L'ensemble R_E a-t-il un maximum ? Si oui, le préciser.
- 5. Soient \mathcal{R} et \mathcal{S} deux relations d'équivalence sur E. Montrer que

$$\mathcal{S} \leq \mathcal{R} \iff \forall x \in E, \text{cl}_{\mathcal{S}}(x) \subset \text{cl}_{\mathcal{R}}(x).$$

6. Montrer que toute partie $A \subset R_E$ admet une borne supérieure et une borne inférieure.

Indications

Exercice 9. L'injectivité de ϕ revient à dire qu'on peut retrouver A en connaissant $A \cap X$ et $A \cap Y$; à quelle condition ceci est-il vrai pour tout A?

Exercice 10. On pourra utiliser la caractérisation des applications injectives/surjectives en fonction des $f(f^{-1}(B))$ et $f^{-1}(f(A))$.

Exercice 11. Décrire un tel couple (A, B) revient à décider pour chaque élément s'il est dans A (mais pas dans B), dans B (mais pas dans A) ou ni dans B.

Exercice 14. Pour 1., faire un dessin!

Exercice 16. Raisonner par l'absurde. Si $\pi: E \to \mathscr{P}(E)$ est une telle application surjective, considérer l'ensemble $X = \{x \in E \mid x \notin \pi(x)\}$

Exercice 18. Considérer la question analogue dans \mathbb{Z} .

Exercice 23. Chaque classe d'équivalence contient exactement un ensemble inclus dans \overline{A}

Exercice 24. La question 4. est indépendante. Considérer le graphe de f.

Exercice 31. Montrer l'énoncé pour une application croissante de [0,1] dans lui-même ; puis adapter la démonstration.