DM 7 - Théorèmes de Cantor-Bernstein et de Knaster-Tarski

1 Théorème de Cantor-Bernstein

Soient E et F deux ensembles 1 , soient $f: E \to F$ et $g: F \to E$ deux injections. On souhaite montrer que E et F sont équipotents, c'est-à-dire qu'il existe une bijection de E dans F – c'est le *théorème de Cantor-Bernstein*. On introduit d'abord quelques définitions :

- Un élément $x \in E$ (resp. $y \in F$) a un parent s'il a un antécédent par g (resp. par f). Un tel antécédent est nécessairement unique : on l'appellera *le parent* de x (resp. de y).
- Pour tout $n \in \mathbb{N}$, on définit récursivement le nombre d'ancêtres d'un élément de E ou de F:
 - Les éléments ayant 0 ancêtre sont ceux n'ayant pas de parent.
 - Pour tout $n \in \mathbb{N}^*$, les éléments ayant (exactement) n ancêtres sont ceux ayant un parent, et dont le parent a (exactement) n-1 ancêtres.
- On dit des autres éléments qu'ils ont une infinité d'ancêtres.
- Pour tout $n \in \mathbb{N}$, on note E_n (resp. F_n) les éléments de E (resp. de F) ayant n ancêtres.
- On note E_{∞} (resp. F_{∞}) les éléments de E (resp. de F) ayant une infinité d'ancêtres.
- 1. Montrer que $E=\bigcup_{n\in\mathbb{N}\cup\{\infty\}}E_n$ et que cette union est disjointe. On admet le résultat analogue pour F.
- 2. Soit $n \in \mathbb{N}$. Montrer que $f(E_n) = F_{n+1}$ et que $g(F_n) = E_{n+1}$. En déduire² que $f_{|E_n|} : E_n \to F_{n+1}$ et $g_{|F_n|} : F_n \to E_{n+1}$ sont des bijections.
- 3. Montrer que $f(E_{\infty}) = F_{\infty}$ et en déduire que $f_{|E_{\infty}} : E_{\infty} \to F_{\infty}$ est une bijection.
- 4. En déduire l'existence d'une bijection $h: E \to F$. On fera un dessin résumant la situation.

 $^{^{1}}$ On supposera pour simplifier E et F disjoints mais le résultat est valable en général.

 $^{^2 \}mbox{On}$ n'écrit pas explicitement les co-restrictions pour ne pas alour dir la notation.

2 Théorème de Knaster-Tarski

Un ensemble ordonné (T, \leq) est un treillis si, pour tous $a, b \in T$, la partie $\{a, b\}$ admet une borne inférieure et une borne supérieure.

- 1. Montrer que si (T, \leq) est un ensemble totalement ordonné, alors c'est un treillis.
- 2. Soit *E* un ensemble. Montrer que l'ensemble ordonné $(\mathcal{P}(E), \subset)$ est un treillis.
- 3. Montrer que l'ensemble ℕ ordonné par la relation de divisibilité est un treillis.

Un ensemble ordonné (X, \leq) est *complet* si toute partie A de X admet une borne supérieure³.

4. Montrer que, dans un ensemble ordonné complet, toute partie admet une borne inférieure.

En particulier, si (X, \leq) est un ensemble ordonné complet, c'est un treillis. On parle aussi de *treillis complet*.

- 5. Soit *E* un ensemble. Montrer que $(\mathscr{P}(E), \subset)$ est un treillis complet.
- 6. Soit (T, \leq) un treillis complet. Soit $f: T \to T$ une application croissante. On cherche à montrer que f admet un point fixe⁴, c'est-à-dire qu'il existe $x \in T$ tel que f(x) = x. On note $A = \{x \in T \mid x \leq f(x)\}$ et $M = \sup(A)$
 - (a) Montrer que $\forall x \in A, x \le f(M)$. En déduire que $M \le f(M)$.
 - (b) Montrer que $f(M) \in A$ et conclure.
- 7. **Une première application.** Soient a < b deux réels.
 - (a) Montrer que le segment [a, b], muni de l'ordre usuel, est un treillis complet.
 - (b) En déduire que toute fonction croissante de [a, b] dans [a, b] admet un point fixe.
 - (c) Le résultat subsiste-t-il si on remplace [a, b] par]0,1[ou par \mathbb{R} ?
- 8. Une autre preuve du théorème de Cantor-Bernstein.

Soient *E* et *F* deux ensembles, soient $f: E \to F$ et $g: F \to E$ deux applications injectives.

- (a) On définit G de $\mathcal{P}(E)$ dans $\mathcal{P}(E)$ par $\forall A \in \mathcal{P}(E)$, $G(A) = E \setminus g(F \setminus f(A))$. Montrer que G est une application croissante pour la relation d'inclusion.
- (b) Montrer que *G* admet un point fixe, qu'on notera *M* dans la suite.
- (c) Pour tout $x \in g(F)$, on note $g^{-1}(x) \in F$ l'unique antécédent de x par g. On définit $h: E \to F$ par $\forall x \in E, h(x) = \begin{cases} f(x) & \text{si } x \in M \\ g^{-1}(x) & \text{si } x \notin M. \end{cases}$ Montrer que h est une bijection de E dans F.

³En particulier, avec $A = \emptyset$, X admet un plus petit élément.

⁴Théorème de Knaster-Tarski