DM 7 - Théorèmes de Cantor-Bernstein et de Knaster-Tarski - Corrigé

1 Théorème de Cantor-Bernstein

1. Par définition, E_{∞} est le complémentaire de $\bigcup_{n\in\mathbb{N}} E_n$ dans E. On a donc bien $E=\bigcup_{n\in\mathbb{N}\cup\{\infty\}} E_n$. Par définition, les éléments de E_0 n'ont pas de parent mais ceux de E_n $(n\geq 1)$ ou de E_{∞} en ont un. Donc les intersections $E_0\cap E_{\infty}$ et $E_0\cap E_n$ E_n (E_n intersections E_n est le complémentaire de E_n dans E, les intersections $E_n\cap E_n$ E_n is ont vides aussi.

Il reste à vérifier que si $n, p \in \mathbb{N}^*$ sont distincts, alors $E_n \cap E_p = \emptyset$. On raisonne par l'absurde, en supposant l'existence d'un élément $x \in E_n \cap E_p$. On peut supposer, sans perte de généralité, que n < p. Comme x a n ancêtres, on peut noter x_1 le parent de x, x_2 le parent de x_1 ... jusqu'à x_n le parent de x_{n-1} . Par une récurrence finie immédiate, on montre que pour tout $k \in [1, n]$, $x_k \in E_{n-k} \cap E_{p-k}$ si k est pair et $x_k \in F_{n-k} \cap F_{p-k}$ si k est impair. En particulier, $x_n \in E_0 \cap E_{n-p}$ ou $x_n \in F_0 \cap F_{n-p}$. Comme x_n appartient à E_0 ou à E_0 , il n'a pas de parent. Comme il appartient à E_{n-p} ou E_{n-p} , avec $E_n \cap E_n$ a un. C'est absurde. Donc $E_n \cap E_n = \emptyset$.

Bilan : l'union $E = \bigcup_{n \in \mathbb{N} \cup \{\infty\}} E_n$ est disjointe.

2. Soit $n \in \mathbb{N}$, soit $x \in E_n$. L'élément $f(x) \in F$ a pour parent x, qui a n ancêtres. Ainsi f(x) a n+1 ancêtres. Donc $f(x) \in F_{n+1}$. Ceci montre que $f(E_n) \subset F_{n+1}$.

Soit $y \in F_{n+1}$. Comme $n+1 \ge 1$, y a un parent, qu'on note x, et x a n ancêtres. Donc $x \in E_n$ et f(x) = y. Ainsi, $F_{n+1} \subset f(E_n)$.

Par double inclusion, on a montré que $f(E_n) = F_{n+1}$.

Ainsi, f induit bien une application $f_{|E_n}: E_n \to F_{n+1}$ et cette application est surjective. Comme f est injective, $f_{|E_n}$ aussi et finalement $f_{|E_n}: E_n \to F_{n+1}$ est une bijection.

On montre de même que $g(F_n) = E_{n+1}$ et que $g_{|F_n} : F_n \to E_{n+1}$ est une bijection.

3. Soit $x \in E_{\infty}$. L'élément f(x) a pour parent x donc $f(x) \notin F_0$. De plus, pour tout $n \in \mathbb{N}^*$, $x \notin E_{n-1}$ et donc $f(x) \notin F_n$. Ainsi, $f(x) \in F_{\infty}$. Ainsi $f(E_{\infty}) \subset F_{\infty}$.

Soit $y \in F_{\infty}$. Par définition, y a un parent, qu'on note x. Si x appartenait à E_n , pour un certain $n \in \mathbb{N}$, y appartiendrait à F_{n+1} , ce qui n'est pas. Donc $x \in E_{\infty}$ et on a montré que $F_{\infty} \subset f(E_{\infty})$.

Par double inclusion, on a montré que $f(E_{\infty}) = F_{\infty}$.

On en déduit que $f_{|E_{\infty}}: E_{\infty} \to F_{\infty}$ est bien définie et que c'est une surjection. Comme f est une injection, $f_{|E_{\infty}}: E_{\infty} \to F_{\infty}$ est aussi une injection ; c'est donc une bijection.

- 4. Pour simplifier les notations, on note :
 - Pour tout $n \in \mathbb{N}$, $f_n = f_{|E_n|} : E_n \to F_{n+1}$ et $g_n = g_{|F_n|} : F_n \to E_{n+1}$.
 - $f_{\infty} = f_{\mid E_{\infty}} : E_{\infty} \to F_{\infty}$.

Toutes ces applications sont des bijections. On pose maintenant $\phi: E \to F$, définie par

$$\forall x \in E, \phi(x) = \begin{cases} f_n(x) & \text{si } x \in E_n, \text{ avec } n \text{ pair} \\ \left(g_{n-1}\right)^{-1}(x) & \text{si } x \in E_n, \text{ avec } n \text{ impair} \\ f_{\infty}(x) & \text{si } x \in E_{\infty}. \end{cases}$$

Cette application est bien définie car $E=\bigcup_{n\in\mathbb{N}\cup\{\infty\}}E_n$ et que l'union est disjointe.

Remarquons que si $x \in E_n$ avec n pair, $\phi(x) \in F_{n+1}$, si $x \in E_n$ avec n impair, $\phi(x) \in F_{n-1}$ et si $x \in E_\infty$, $f(x) \in F_\infty$.

On en déduit (en utilisant que $F = \bigcup_{n \in \mathbb{N} \cup \{\infty\}} F_n$ et que cette union est disjointe) que si $x, x' \in E$ sont tels que $\phi(x) = \phi(x')$, alors ou bien x, x' appartiennent à un même E_n $(n \in \mathbb{N})$, ou bien

sont tels que $\phi(x) = \phi(x')$, alors ou bien x, x' appartiennent à un même E_n $(n \in \mathbb{N})$, ou bien $x, x' \in E_{\infty}$. Mais comme f_n , $(g_n)^{-1}$ et f_{∞} sont bijectives (donc injectives), nécessairement x = x'. Ainsi ϕ est injective.

Soit maintenant $y \in F$.

- Ou bien il existe un entier n pair tel que $y \in F_n$. Alors, notons $x = g_n(y) \in E_{n+1}$. On a $y = (g_n)^{-1}(x) = \phi(x)$ (car n+1 impair). Donc $y \in \text{Im}(\phi)$.
- Ou bien il existe un entier n impair tel que $y \in F_n$. Alors, comme $f_{n-1} : E_{n-1} \to F_n$ est bijective, il existe $x \in E_{n-1}$ tel que $y = f_{n-1}(x) = \phi(x)$ (car n-1 est pair). Donc $y \in \text{Im}(\phi)$.
- Ou bien $y \in F_{\infty}$. Alors, comme f_{∞} est bijective, il existe $x \in E_{\infty}$ tel que $y = f_{\infty}(x) = \phi(x)$. Donc $y \in \text{Im}(\phi)$.

Par disjonction de cas, on en déduit que ϕ est surjective.

Bilan : ϕ est bijective et donc E et F sont équipotents.

2 Théorème de Knaster-Tarski

- 1. Si T est totalement ordonné et si $a, b \in T$, alors ou bien $a \ge b$, ou bien $b \ge a$. Dans le premier cas, sup $\{a, b\} = a$ et $\inf\{a, b\} = b$; dans le deuxième cas, c'est le contraire.
- 2. Si X, Y sont deux parties de E, alors $Z \in \mathcal{P}(E)$ majore $\{X,Y\}$ ssi $X \subset Z$ et $Y \subset Z$ ssi $X \cup Y \subset Z$. On en déduit que $X \cup Y$ est le plus petit des majorants de $\{X,Y\}$; donc $X \cup Y = \sup\{X,Y\}$. De même, $X \cap Y = \inf\{X,Y\}$.
- 3. On a vu en cours que pour cette relation d'ordre, la borne supérieure de deux entiers est leur ppcm, la borne inférieure leur pgcd.
- 4. Soit X un ensemble ordonné complet. Soit A une partie de X. On note M l'ensemble des minorants de A; cet ensemble est non vide car X admet un plus petit élément m et que m ∈ M. On note M = sup(M), qui est bien défini par hypothèse.Par définition de M, on a ∀y ∈ M, ∀a ∈ A, y ≤ a. En particulier, les éléments de A sont des majorants de M. Par définition d'un sup, on a donc M ≤ a, pour tout a ∈ A. Ainsi, M est aussi un minorant de A; donc M ∈ M. Donc, M est le plus grand élément de M, c'est-à-dire la borne inférieure de A.
- 5. Si $(A_i)_{i \in I}$ est une famille quelconque de parties de E, on montre comme pour le cas de deux ensembles que $\bigcup_{i \in I} A_i$ est la borne supérieure de la partie $\{A_i, i \in I\}$, dans l'ensemble ordonné $(\mathcal{P}(E), \subset)$.
- 6. (a) Soit $x \in A$. Comme M majore A, on a $x \le M$. Par croissance de f, $f(x) \le f(M)$. Comme $x \le f(x)$, on a par transitivité, $x \le f(M)$. Ainsi, f(M) est un majorant de A; comme M est le plus petit des majorants de A, on a $M \le f(M)$.
 - (b) Comme $M \le f(M)$, on a aussi par croissance $f(M) \le f(f(M))$. Par définition de A, $f(M) \in A$. Comme M est un majorant de A, on a donc $f(M) \le M$. Par antisymétrie de la relation d'ordre, M = f(M). Donc, M est un point fixe de f.

7. Une première application.

(a) Soit A une partie non vide de [a,b] (le cas où A est vide est immédiat). Par la propriété de la borne supérieure dans \mathbb{R} , A – vue comme partie de \mathbb{R} – admet une borne supérieure M dans \mathbb{R} (car A est majoré par b). Comme A contient un élément supérieur à a, on a $M \geq a$. De plus, si on avait M > b, alors b serait un majorant de A, strictement plus petit que M, ce qui est absurde. Donc, $M \in [a,b]$. On se convainc que cela revient à dire que M est la borne supérieure de A – vue comme partie de [a,b]. Donc, toute partie de [a,b] admet une borne supérieure ; de même borne inférieure. Donc, [a,b] est un treillis complet.

Remarque. Ne pas se contenter de dire que \mathbb{R} vérifie la propriété de la borne supérieure et que [a,b] est une partie de \mathbb{R} ; sinon, on ne comprend pas ce qu'il se passe pour l'intervalle ouvert]0,1[à la question c).

- (b) On applique le théorème de Knaster-Tarski.
- (c) Non. La fonction $x \mapsto x^2$ est un contre-exemple pour]0,1[et la fonction $x \mapsto x+1$ est un contre-exemple pour \mathbb{R} . Le problème vient du fait que ni]0,1[ni \mathbb{R} ne sont des treillis complets. Le premier

est borné mais ne vérifie pas la propriété de la borne supérieure :]0,1[n'admet pas de borne supérieure, quand on le voit comme une partie de lui-même (\grave{a} *méditer*) ; pour \mathbb{R} , c'est encore plus simplet puisque ce n'est pas un ensemble borné.

8. Une autre preuve du théorème de Cantor-Bernstein.

- (a) Soient A et B deux parties de E telles que $A \subseteq B$. On a $f(A) \subseteq f(B)$. Donc, $F \setminus f(B) \subseteq F \setminus f(A)$. Donc, $g(F \setminus f(B)) \subseteq g(F \setminus f(A))$. Et donc finalement $G(A) = E \setminus g(F \setminus f(A)) \subseteq E \setminus g(F \setminus f(B)) = G(B)$. Donc, G est une application croissante.
- (b) On applique le théorème de Knaster-Tarski ; on a montré précédemment que $\mathcal{P}(E)$ est un treillis complet.
- (c) Traduisons déjà le fait que M est un point fixe de G. On a $M = E \setminus g(F \setminus f(M))$. Cela signifie qu'un élément $x \in E$ vérifie $x \notin M \iff \exists y \in F \setminus f(M) : x = g(y)$. Par injectivité de g, ce y doit être unique ; avec les notations de l'énoncé, on peut même écrire : $x \notin M \iff g^{-1}(x) \notin f(M)$.

Et on a donc aussi $x \in M \iff g^{-1}(x) \in f(M)$.

Considérons maintenant un $y \in F$ et cherchons à résoudre h(x) = y, avec $x \in E$. Il y a deux cas.

- Si $y \in f(M)$, il existe un (unique) $x \in M$ tel que y = f(x). Et alors y = h(x). De plus, y n'est pas de la forme h(t) pour un $t \notin M$, car sinon on aurait $y = g^{-1}(t)$ avec $t \notin M$ et $g^{-1}(t) \in f(M)$, contredisant les équivalences précédentes. On a donc trouvé un unique antécédent à y.
- Si $y \notin f(M)$, alors y ne peut pas s'écrire h(x), avec x dans M. Et si $x \notin M$, on a $y = h(x) \iff y = g^{-1}(x) \iff g(y) = x$. Le seul antécédent envisageable de y par h est donc g(y). Et on a bien $g(y) \notin M$ (toujours grâce aux équivalences précédentes). Ceci conclut ce cas et la démonstration.