DM 8 - Loi de réciprocité quadratique

Dans tout le sujet, p désigne un nombre premier impair. Un entier a non divisible par p est un carré modulo p s'il existe un entier n tel que $a \equiv n^2 [p]$.

1 Symbole de Legendre

Pour tout entier a, on note $\left(\frac{a}{p}\right)$ le symbole de Legendre défini par

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{si } p \text{ divise } a; \\ 1 & \text{si } a \text{ est un carr\'e modulo } p; \\ -1 & \text{sinon.} \end{cases}$$

Par définition, $\left(\frac{a}{p}\right)$ ne dépend que de la classe de congruence de a modulo p : si $a \equiv b[p]$, alors $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.

Pour tout $x \in \mathbb{Z}$ non divisible par p, on note $r_p(x) \in [1, p-1]$ son reste dans la division euclidienne par p. On définit $\theta_p : [1, p-1] \to [1, p-1]$ par $\theta_p(x) = r_p(x^2)$.

- 1. Identifier l'image de θ_p et montrer que chacun des éléments de l'image a exactement deux antécédents par θ_p .
- 2. En déduire que dans [1, p-1], exactement $\frac{p-1}{2}$ entiers sont des carrés modulo p.
- 3. Montrer que pour tout $a \in [1, p-1], a^{\frac{p-1}{2}} \equiv \pm 1[p].$

On admet ^1 que l'ensemble des $a \in [1, p-1]$ tels que $a^{\frac{p-1}{2}} \equiv 1$ [p] a pour cardinal au plus $\frac{p-1}{2}$.

4. Critère d'Euler.

- (a) Montrer le critère d'Euler : $\forall a \in \mathbb{Z}, \left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}[p].$
- (b) En déduire que pour tous $a, b \in \mathbb{Z}, \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.
- (c) En limitant les calculs, déterminer si 5 est un carré modulo 23.
- (d) Expliciter le critère d'Euler pour a = -1.

On note
$$S_p = \{1, ..., \frac{p-1}{2}\}.$$

 $^{^{1}}$ C'est une conséquence du fait que $\mathbb{Z}/p\mathbb{Z}$ est un corps et du cours à venir sur les polynômes.

- 5. **Un (autre) lemme de Gauss.** Soit $a \in \mathbb{Z}$, non divisible par p.
 - (a) Montrer que pour tout $s \in S_p$, il existe un unique couple $(e_s(a), s_a) \in \{\pm 1\} \times S_p$ tel que $as \equiv e_s(a)s_a[p]$.
 - (b) Montrer que l'application $f: S_p \to S_p$ est une bijection.
 - (c) En considérant le produit $\prod_{s \in S_p} s$, montrer que $a^{\frac{p-1}{2}} \equiv \prod_{s \in S_p} e_s(a) [p]$.
 - (d) En déduire le lemme de Gauss : $\left(\frac{a}{p}\right) = \prod_{s \in S_p} e_s(a)$.
- 6. On cherche à déduire du lemme de Gauss la valeur de $\left(\frac{2}{p}\right)$.
 - (a) A quelle condition sur $s \in S_p$, a-t-on $2s \in S_p$? En déduire que $\left(\frac{2}{p}\right) = (-1)^{n(p)}$, où n(p) est le nombre d'entiers u tels que $\frac{p-1}{4} < u \le \frac{p-1}{2}$.
 - (b) Calculer n(p), selon que p est congru à 1, -1, 3 ou -3 modulo 8.
 - (c) En déduire que $\left(\frac{2}{p}\right) = \left\{ \begin{array}{cc} 1 & \text{si } p \equiv \pm 1 \, [8] \text{;} \\ -1 & \text{si } p \equiv \pm 3 \, [8]. \end{array} \right.$

En guise d'application, montrons qu'il existe une infinité de nombres premiers congrus à -1 modulo 8. On raisonne par l'absurde en supposant qu'il y a un ensemble fini $\{p_1, \ldots, p_n\}$ de tels nombres premiers. On note $N = (4p_1 \ldots p_n)^2 - 2$.

- (d) Montrer que tous les diviseurs premiers impairs p de N sont tels que $p \equiv \pm 1$ [8].
- (e) Aboutir à une contradiction, en considérant $\frac{N}{2}$.

La loi de réciprocité quadratique dont une preuve est proposée à la section suivante affirme que si p et q sont deux nombres premiers impairs distincts, alors $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}$.

Autrement dit, si p ou q est congru à 1 modulo 4, alors $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$; sinon $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$.

Couplée avec la multiplicativité du symbole de Legendre (question 5.b) et les calculs de $\left(\frac{-1}{p}\right)$ et $\left(\frac{2}{p}\right)$ (questions 5.d et 7.c), la loi de réciprocité quadratique permet de calculer rapidement $\left(\frac{a}{p}\right)$, pour un entier a quelconque.

2

- 7. Déterminer pour quels premiers impairs *p*, 3 est un carré modulo *p*.
- 8. Montrer que 101 n'est pas un carré modulo 641.

2 Une démonstration de la loi de réciprocité quadratique

Une première démonstration de la loi de réciprocité quadratique a été donnée par Gauss en 1801. Nous suivons celle donnée par Eisenstein en 1845.

9. Soit m = 2n + 1 un entier naturel impair. On cherche à montrer l'identité

$$\forall x \in \mathbb{R} \setminus \pi \mathbb{Z}, \frac{\sin(mx)}{\sin x} = (-4)^n \prod_{j=1}^n \left(\sin^2 x - \sin^2 \frac{2\pi j}{m} \right).$$

(a) Montrer que
$$\forall x \in \mathbb{R} \setminus \pi \mathbb{Z}$$
, $\frac{\sin(mx)}{\sin x} = \sum_{j=0}^{n} {2n+1 \choose 2j+1} (-1)^j (\sin^2 x)^j (1-\sin^2 x)^{n-j}$.

On considère le polynôme
$$P = \sum_{j=0}^{n} {2n+1 \choose 2j+1} (-1)^j X^j (1-X)^{n-j}$$
.

- (b) Montrer que les réels $\sin^2 \frac{2\pi j}{m}$, pour $j \in [1, n]$, sont des racines distinctes de P.
- (c) En déduire qu'il existe $\lambda \in \mathbb{R}$ tel que $P = \lambda \prod_{j=1}^n \left(X \sin^2 \frac{2\pi j}{m} \right)$.
- (d) Identifier la valeur de λ et conclure.

Soient p et q deux nombres premiers impairs distincts. On rappelle qu'on note $S_p = \{1, \dots, \frac{p-1}{2}\}$ et $S_q = \{1, \dots, \frac{q-1}{2}\}$.

- 10. En utilisant le lemme de Gauss, montrer que $\left(\frac{q}{p}\right) = \prod_{s \in S_p} \frac{\sin \frac{2\pi qs}{p}}{\sin \frac{2\pi s}{p}}$.
- 11. En déduire que $\left(\frac{q}{p}\right) = \prod_{s \in S_p} (-4)^{\frac{q-1}{2}} \prod_{t \in S_q} \left(\sin^2 \frac{2\pi s}{p} \sin^2 \frac{2\pi t}{q}\right).$
- 12. Conclure.