Arithmétique

1 Divisibilité

EXERCICE 1. \clubsuit – \P \bigcirc \bigcirc *Sans congruences* Soit $n \in \mathbb{N}$.

- 1. Montrer que $7 \mid 3^{105} + 4^{105}$.
- 2. Montrer que $8 \mid n^3(n^6 1)$.

- 3. Montrer que si n est impair, $24 \mid n(n^2 1)$.
- 4. Montrer que $n^2 | (n+1)^n 1$.

EXERCICE 2. \Diamond – \bigcirc \bigcirc *Produit de k entiers successifs*

Montrer que le produit de k entiers successifs est divisible par k!.

EXERCICE 3. $\bullet \bigcirc \bigcirc a^b = b^a$ Résoudre dans $(\mathbb{N}^*)^2$, $a^b = b^a$.

EXERCICE 4. ●○○ *Équations simples*

- 1. Pour quels entiers $n \in \mathbb{N}$ a-t-on $n+1 \mid n^2+1$?
- 2. Pour quels entiers $n \in \mathbb{Z}$ a-t-on $n-3 \mid n^3-3$?

EXERCICE 5. \clubsuit – \bullet \bullet \bullet \bullet *Nombres avec des* 1 *et des* 2

Soit $n \in \mathbb{N}^*$. Montrer qu'il existe un unique nombre k à n chiffres, écrit uniquement avec des 1 et des 2, tel que $2^n \mid k$.

EXERCICE 6. •• *Produit de trois entiers consécutifs*

Pour $n \ge 2$, montrer que le produit de trois entiers consécutifs n'est pas une puissance n-ème.

EXERCICE 7. \$\(\beta\) - \(\beta\)\(\text{O}\) Puissances de 2 et de 3

- 1. Résoudre dans $(\mathbb{N}^*)^2 : 3^n 2^m = 1$.
- 2. Déterminer les $n \in \mathbb{N}^*$ tels que $2^n \mid 3^n 1$.

EXERCICE 8. ●●● *IMO*, 1990

Déterminer les $n \in \mathbb{N}^*$ tels que $n^2 \mid 2^n + 1$.

2 PGCD, relations de Bézout, primalité relative

EXERCICE 9. $\bigcirc\bigcirc\bigcirc$ *Fraction irréductible* Montrer que pour tout $n \in \mathbb{N}$, la fraction $\frac{21n+4}{14n+3}$ est irréductible.

EXERCICE 10. OOO Calculs de pgcd et relations de Bézout

Calculer le pgcd et une relation de Bézout pour : 151 et 77 ; 1320 et 720.

EXERCICE 11. $\bigcirc\bigcirc\bigcirc$ *Calcul de pgcd, expression littérale*

Soit $n \in \mathbb{N}$. Que vaut le pgcd de 2n+1 et 9n+4? de 2n-1 et 9n+4?

EXERCICE 12. ••• *Équations linéaires*

- 1. Résoudre dans \mathbb{Z}^2 : 26x + 15y = 4. 2. Résoudre dans \mathbb{Z}^3 : 5x 3y + 8z = 1.

EXERCICE 13. $\bullet \bigcirc \bigcirc$ (n+1) divise $\binom{2n}{n}$

Soit $n \in \mathbb{N}^*$. Montrer que n+1 et 2n+1 sont premiers entre eux. En déduire que $(n+1) \mid \binom{2n}{n}$.

EXERCICE 14. $\bullet \bigcirc \bigcirc$ *Puissances de* $1 + \sqrt{2}$ Soit $n \in \mathbb{N}^*$.

- 1. Montrer qu'il existe deux entiers a_n et b_n tels que $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}$.
- 2. Montrer que $a_n \wedge b_n = 1$.

EXERCICE 15. \clubsuit/\lozenge – $\bullet\bigcirc\bigcirc$ *Produit et ppcm fixés*

Soient $P, m \in \mathbb{N}^*$.

A quelles conditions sur P et m existent-ils deux nombres x et y tels que xy = P et $x \lor y = m$?

EXERCICE 16. ●●○ *PGCD des nombres de Fibonacci*

On considère la suite $(F_n)_{n\in\mathbb{N}}$ définie par $F_0=0$, $F_1=1$ et $\forall n\in\mathbb{N}$, $F_{n+2}=F_{n+1}+F_n$. On rappelle les formules suivantes, montrées dans un TD précédent, valables pour $n \in \mathbb{N}$ et $m \in \mathbb{N}^*$:

a)
$$F_{n+2}F_n - F_{n+1}^2 = (-1)^{n+1}$$
;

b)
$$F_{n+m} = F_m F_{n+1} + F_{m-1} F_n$$
.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $F_n \wedge F_{n+1} = 1$.
- 2. Montrer que pour tous $n, m \in \mathbb{N}^*$, en notant r le reste dans la division euclidienne de n par m, on a $F_n \wedge F_m = F_m \wedge F_r$.
- 3. En déduire, pour tous $n, m \in \mathbb{N}$, la valeur de $F_n \wedge F_m$.

EXERCICE 17. \clubsuit/\lozenge – $\bullet \bullet \bigcirc$ *Relations de Bézout à coefficients positifs*

Soient a et b deux entiers naturels premiers entre eux. On note $A = \{au + bv, (u, v) \in \mathbb{N}^2\}$.

- 1. Montrer que $ab a b \notin A$.
- 2. Montrer que, pour tout k > ab a b, $k \in A$.

3 Nombres premiers

EXERCICE 18. $\bigcirc\bigcirc\bigcirc$ $\sqrt{n} \notin \bigcirc$

Soit $n \in \mathbb{N}$. Montrer que : $\sqrt{n} \in \mathbb{N} \iff \sqrt{n} \in \mathbb{Q} \iff \exists k \in \mathbb{N}, n = k^2$.

EXERCICE 19. ●○○ *Ensemble d'entiers successifs sans nombres premiers*

Soit $N \in \mathbb{N}$. Montrer qu'il existe une suite de N nombres consécutifs dont aucun n'est premier.

EXERCICE 20. ♦ − ●○○ *Témoins de Fermat*

Montrer qu'un entier $n \ge 2$ n'est pas premier ssi il existe $a \in [2, n-1]$ tel que $a^{n-1} \ne 1$ [n].

EXERCICE 21. ♣ – **●**○○ *Nombres premiers jumeaux*

Deux nombres premiers p et q sont jumeaux si |p-q|=2.

- 1. Montrer que p et q sont jumeaux ssi pq + 1 est un carré.
- 2. Si p et q sont des nombres premiers jumeaux supérieurs à 5, montrer que $p + q \equiv 0$ [12].

EXERCICE 22. ♦ - ●○○ *Premiers congrus à* 3 *modulo* 4

Montrer qu'il existe une infinité de nombres premiers congrus à 3 modulo 4.

EXERCICE 23. $\bullet \bullet \bigcirc$ *Une équation diophantienne*

Soit p un nombre premier. Résoudre dans \mathbb{N}^2 : $x^2 + px = y^2$.

EXERCICE 24. ♣ – **●●○** *L'invasion des Uns*

- 1. Soient $n, m \in \mathbb{N}^*$ deux entiers. Montrer que $n \land m = 1$ ssi il existe $k \ge 1$ tel que $n^k \equiv 1 [m]$.
- 2. En déduire que tout nombre premier à 10 a un multiple dont l'écriture décimale ne comporte que le chiffre 1.

EXERCICE 25. ●●○ *Nombre, somme et produit des diviseurs*

Pour tout entier $n \in \mathbb{N}^*$, on note $\tau(n)$ le nombre de diviseurs de n et S(n) la somme des diviseurs de n.

- 1. Établir une formule pour $\tau(n)$ et S(n) en fonction de la décomposition en facteurs premiers de n.
- 2. En déduire que τ et S sont des fonctions multiplicatives :

$$\forall n, m \in \mathbb{N}^*, n \land m = 1 \Longrightarrow \tau(nm) = \tau(n)\tau(m) \text{ et } S(nm) = S(n)S(m).$$

- 3. Montrer que $\tau(n)$ est impair ssi n est un carré parfait.
- 4. On note P(n) le produit des diviseurs de n. Exprimer P(n) en fonction de n et $\tau(n)$.

EXERCICE 26. $\bullet \bullet \bigcirc$ *Nombres de la forme a*ⁿ ± 1

Soient $a, n \ge 2$.

- 1. Montrer que si $a^n + 1$ est premier, alors a est pair et n est une puissance de 2.
- 2. Montrer que si $a^n 1$ est premier, alors n est premier et a = 2.

EXERCICE 27. \clubsuit – $\bullet \bullet \bigcirc$ *Nombres de Fermat* Pour tout $n \in \mathbb{N}^*$, on note $F_n = 2^{2^n} + 1$ le n-ème nombre de Fermat.

- 1. Montrer que si $n \neq m$, alors $F_n \wedge F_m = 1$. En déduire une nouvelle preuve de l'infinité des nombres premiers.
- 2. Montrer que tout facteur premier de F_n est congru à 1 modulo 2^{n+1} .

EXERCICE 28. ♣ – ●●○ Formule de Legendre

- 1. Soit $p \in \mathbb{P}$ et $n \in \mathbb{N}$. Montrer que $v_p(n!) = \sum_{k \ge 1} \left\lfloor \frac{n}{p^k} \right\rfloor$.
- 2. En déduire que si $m, n \in \mathbb{N}$, alors $\frac{(2m)!(2n)!}{m!n!(m+n)!} \in \mathbb{N}$.

EXERCICE 29. $\clubsuit/\diamondsuit - \bullet \bullet \bigcirc$ *Théorème de Wilson* Montrer que $n \ge 2$ est premier ssi $(n-1)! \equiv -1$ [n].

EXERCICE 30. \clubsuit – $\bullet \bullet \bigcirc$ *Premiers congrus à* 1 *modulo* 4 Soit *p* un nombre premier impair.

- 1. On suppose que $x^2 = -1[p]$ admet une solution. Montrer que p = 1[4].
- 2. En déduire qu'il existe une infinité de nombres premiers congrus à 1 modulo 4.
- 3. Réciproquement, si $p \equiv 1$ [4], montrer que $x = \left(\frac{p-1}{2}\right)!$ vérifie $x^2 \equiv -1$ [4].

EXERCICE 31. $\bullet \bullet \bullet \bullet$ *Diviseurs des nombres de la forme* $2^p - 1$ Soit p un nombre premier, soit k un diviseur positif de $2^p - 1$. Montrer que $k \equiv 1$ [2p].

EXERCICE 32. •• *Nombres de Carmichael*

Un entier n est un nombre de Carmichael s'il n'est pas premier et s'il vérifie la propriété (F):

$$\forall a \in \mathbb{Z}, a^n \equiv a[n].$$

- 1. Justifier que les nombres premiers vérifient la propriété (*F*).
- 2. Soit $n \ge 2$ sans facteur carré. Soit $m \ge 2$ tel que pour tout diviseur premier p de n, $p-1 \mid m-1$. Montrer que $a^m \equiv a[n]$, pour tout $a \in \mathbb{Z}$.
- 3. Soit $n = p^2 m$, avec p premier et $m \in \mathbb{N}^*$. Montrer que

$$(1+pm)^n \equiv 1 [n].$$

- 4. En déduire qu'un entier n vérifie la propriété (F) ssi il est sans facteur carré et pour tout diviseur premier p de n, p-1 | n-1.
- 5. Montrer que 561 est un nombre de Carmichael.

EXERCICE 33. $\bullet \bullet \bigcirc$ *Valuation p-adique de* $\binom{p^n}{k}$

Soit $p \in \mathbb{P}$, soit $n \ge 1$, soit $k \in [1, p^n - 1]$. Déterminer $\nu_p\left(\binom{p^n}{k}\right)$.

EXERCICE 34. \clubsuit/\diamondsuit – $\bullet \bullet \bullet$ H_n n'est pas un entier.

Soit $n \ge 2$. On note $H_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que H_n n'est pas entier.

EXERCICE 35. ♣ – ●●● *Minoration de Tchebychev*

- 1. Montrer que pour tout couple $(a,b) \in (\mathbb{N}^*)^2$, $a \binom{a+b}{b}$ divise $\bigvee_{1 \le i \le a} (b+i)$.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $(n+1)\bigvee_{0 \le i \le n} \binom{n}{i} = \bigvee_{1 \le i \le n+1} i$.
- 3. En déduire que pour tout $n \ge 1$, $\bigvee_{1 \le i \le n} i \ge 2^{n-1}$.
- 4. En déduire une minoration de $\pi_n = \left| \{ p \le n \mid p \text{ premier} \} \right|$.

4 Congruences

EXERCICE 36. $\bigcirc\bigcirc\bigcirc$ *Résolution de congruences*

- 1. Quel est le reste de 2020²⁰²⁰ dans la division euclidienne par 7 ?
- 2. Déterminer un x tel que $429x \equiv 1$ [700].
- 3. Résoudre $24x \equiv 3[9]$.

EXERCICE 37. ♣/♦ – ●○○ Carré finissant par des 9

Quel est le nombre maximal de 9 terminant l'écriture décimale d'un carré parfait ?

EXERCICE 38. • O Applications du petit théorème de Fermat

- 1. Quel est le reste de la division euclidienne de $2^{70^{71}}$ par 13 ?
- 2. Montrer que pour tout $n \in \mathbb{Z}$, $n^7 \equiv n$ [42].
- 3. Trouver les nombres premiers p tels que p divise $2^p + 1$.
- 4. Montrer que 13 divise $2^{70} + 3^{70}$.

EXERCICE 39. • O Différences de puissances

Déterminer min $\{|36^n - 5^m|, (n, m) \in (\mathbb{N}^*)^2\}$.

EXERCICE 40. •• *Somme de trois carrés*

Soit *n* un entier somme de trois carrés.

- 1. Montrer que *n* n'est pas congru à 7 modulo 8.
- 2. Montrer plus généralement que *n* n'est pas de la forme $4^a(8b+7)$, avec $a, b \in \mathbb{N}$.

EXERCICE 41. ••• $3^x = 8 + y^2$

Soit $(x, y) \in \mathbb{N}^2$ une solution de $3^x = 8 + y^2$.

- 1. Déterminer la parité de x.
- 2. Conclure.

EXERCICE 42. \clubsuit/\diamondsuit – $\bullet \bullet \bullet$ *Lemme de Hensel*

1. Soit p un nombre premier impair. Montrer l'équivalence

$$(\exists x \in \mathbb{Z} : x^2 + x + 3 \equiv 0 [p]) \iff (\exists y \in \mathbb{Z} : y^2 \equiv -11 [p]).$$

2. Pour chaque entier $n \in \mathbb{N}^*$, on considère l'équation (E_n) :

$$x^2 + x + 3 \equiv 0 [n].$$

- (a) Résoudre (E_2) et (E_3) .
- (b) En suivant le raisonnement de la première question, résoudre (E_n) pour $n \in \{5,7,11\}$.
- (c) Déduire de ce qui précède une résolution de (E_n) dans les cas $n \in \{10, 15, 55, 105\}$.
- (d) Résoudre l'équation (E_n) dans le cas n = 121 puis dans les cas $n \in \{25, 125\}$.
- (e) Montrer que, pour tout $k \in \mathbb{N}^*$, il existe deux éléments $a \neq b \in [0, 5^k 1]$ tels que les solutions de (E_{5^k}) soient exactement les entiers congrus à a ou b modulo 5^k .

Indications

Exercice 2. Reconnaître le quotient du produit de *k* entiers consécutifs par *k*!.

Exercice 15. Raisonner par analyse-synthèse. Une condition évidente est $m \mid p$. Est-ce la seule ?

Exercice 17. Pour 2., modifier une relation de Bézout pour un tel k en remarquant que ab+b(-a)=0

Exercice 20. Si n = ab, avec $a, b \ge 2$, que dire de a^{n-1} ?

Exercice 22. Raisonner par l'absurde. Si N est le produit de tous ces nombres premiers, considérer 4N-1.

Exercice 29. Pour \Leftarrow , raisonner par contraposée. Pour \Rightarrow , regrouper un entier et son inverse modulo n.

Exercice 34. Considérer la valuation dyadique du numérateur et dénominateur de H_n , écrit sous forme d'une fraction irréductible.

Exercice 37. Regarder modulo 10, puis modulo $100 = 25 \times 4$

Exercice 42. Pour 1., procéder par analogie avec la théorie des équations du second degré sur ℝ.