Semaine 7 - Structures algébriques - Groupes

Nous n'avons pas encore traité d'exercices sur les groupes. Limiter l'abstraction, surtout en début de semaine.

1 Arithmétique – suite et fin

- Reprise du programme précédent
- Arithmétique modulaire Le point de vue $\mathbb{Z}/n\mathbb{Z}$ n'est pas exigible.
 - Relation de congruence modulo n. On note $a \equiv b[n]$
 - Compatibilité des opérations avec la congruence
 - Inverse modulo n; a admet un inverse modulo n ssi a est premier avec n
 - Petit théorème de Fermat
 - Application à la détermination de la valeur de a^N modulo p, où a et N sont des grands nombres
 - Théorème des restes chinois; avec calcul effectif d'une solution

2 Lois de composition interne

- Lois de composition interne (LCI)
- Associativité, élément neutre, symétrique, commutativité, élément simplifiable
- Itérés (ou puissances) d'un élément par une LCI
- Conventions d'écriture additive/multiplicative pour les LCI
- Lois + et \times sur $\mathbb{Z}/n\mathbb{Z}$

3 Groupes

La notion d'ordre d'un élément est hors programme.

- Groupe, groupe abélien, exemples (notamment $\mathbb{Z}/n\mathbb{Z}$)
- Produit de groupes
- Sous-groupe
- Caractérisation des sous-groupes de Z
- Caractérisation des sous-groupes de \mathbb{R} : de la forme $a\mathbb{Z}$ ou dense (= rencontre tout intervalle]a, b[, avec a < b)
- Intersection de sous-groupes

- Sous-groupe engendré par une partie A: caractérisation par le haut (intersection des sous-groupes contenant la partie) et par le bas (éléments obtenus par produit et inverse des éléments de A)
- Morphisme de groupes
- Noyau et image d'un morphisme; ce sont des sous-groupes de l'espace de départ/d'arrivée
- Le noyau caractérise l'injectivité; l'image la surjectivité
- Endomorphisme, isomorphisme, automorphisme
- L'ensemble des automorphismes de G est un sous-groupe du groupe des permutations de G.
- Groupes monogènes
- Un groupe monogène infini est isomorphe à \mathbb{Z} ; un groupe monogène fini de cardinal n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

4 Exemples de questions de cours

- Petit théorème de Fermat démonstration au choix
- Résolution effective d'un système de congruences par le théorème des restes chinois
- − Caractérisation des sous-groupes de Z
- Caractérisation des sous-groupes de R
- Si A est une partie d'un groupe G,

$$\langle A \rangle = \{x_1 \dots x_k, k \in \mathbb{N} \text{ et } \forall i \in [1, k], x_i \in A \text{ ou } x_i^{-1} \in A\}.$$

- Caractérisation des groupes monogènes - On pourra se limiter au cas fini ou infini.