
MPSI 3 Devoir surveillé 2025-2026

DS 4 de mathématiques

Durée : 4h.

• Les calculatrices et autres technologies sont interdites.

• Une attention particulière sera portée à la qualité de la rédaction et à la rigueur du
raisonnement. La copie doit être lisible, les pages numérotées, les calculs suffisamment
détaillés, les résultats mis en valeur...

• Les exercices et le problème sont indépendants et peuvent être traités dans un ordre
quelconque.

• Si vous repérez une possible erreur d’énoncé, vous êtes invité(e) à venir le signaler.

1 Exercice – Équation de d’Alembert

On note E l’ensemble des fonctions f : R → R continues telles que

∀x, y ∈ R, f(x+ y) + f(x− y) = 2f(x)f(y).

Soit f ∈ E .

1. Montrer que f(0) ∈
{
0, 1

}
et que, si f(0) = 0, alors f est la fonction nulle.

On suppose désormais que f(0) = 1.

2. Montrer que f est paire.

3. Montrer qu’il existe δ > 0 tel que, pour tout q ∈ N, f
(

δ

2q

)
> 0.

On fixe un tel δ et on suppose que f(δ) ∈]0, 1[. Soit θ ∈]0, π/2[ tel que cos θ = f(δ).

4. Montrer que, pour tout q ∈ N, f
(

δ

2q

)
= cos

(
θ

2q

)
.

5. Soit q ∈ N. Montrer que la suite
(
f

(
nδ

2q

))
n∈N

satisfait une relation de récurrence

linéaire d’ordre 2.

6. En déduire que, pour tous n, q ∈ N, f
(
nδ

2q

)
= cos

(
nθ

2q

)
.

7. En déduire que, pour tout réel x, f(x) = cos

(
xθ

δ

)
.

Avec δ comme dans la question 3, on suppose maintenant que f(δ) ≥ 1 ; on peut alors trouver

θ ∈ R+ tel que ch θ = f(δ). On montrerait de façon analogue que : ∀x ∈ R, f(x) = ch

(
xθ

δ

)
.

8. Déterminer l’ensemble E .
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2 Exercice – Idéaux maximaux d’un anneau

Soit (A,+,×) un anneau commutatif. On dit qu’une partie I de A est un idéal de A si

• I est un sous-groupe de (A,+) ;

• ∀x ∈ I, ∀a ∈ A, ax ∈ I.

1. Montrer que I ⊂ Z est un idéal de Z ssi I est de la forme nZ, pour un entier naturel n.

2. Soient A un anneau, I un idéal de A.
Montrer que si I contient un élément inversible de A, alors I = A.

3. En déduire l’ensemble des idéaux de A, quand A est un corps.

Un idéal I d’un anneau A est maximal s’il est distinct de A et si les seuls idéaux J de A tels
que I ⊂ J ⊂ A sont J = I et J = A.

4. Déterminer les idéaux maximaux de Z.

5. Dans cette question, p désigne un nombre premier. On note Z(p) =
{a

b
, (a, b) ∈ Z × N∗, p ∤ b

}
1.

(a) Montrer que Z(p) est un sous-anneau de Q.
(b) Déterminer l’ensemble des inversibles de Z(p).
(c) Montrer que Z(p) a un unique idéal maximal, que l’on précisera.

6. Dans cette question, on note A l’anneau des fonctions continues de [0, 1] dans R.

(a) Déterminer les inversibles de A.

Pour tout x ∈ [0, 1], on note Ix l’ensemble des f dans A telles que f(x) = 0.

(b) Montrer que Ix est un idéal maximal de A, pour tout x ∈ [0, 1].

On cherche à montrer réciproquement que tout idéal maximal de A est de cette forme.
Soit I un idéal maximal de A ; on suppose par l’absurde que : ∀x ∈ [0, 1], Ix ̸= I.

(c) Soit x ∈ [0, 1]. Montrer qu’il existe fx ∈ I et δx > 0 tel que

∀y ∈ [0, 1], |y − x| ≤ δx =⇒ fx(y) ̸= 0.

Pour tout x ∈ [0, 1], on note Jx l’intervalle [0, 1] ∩ [x− δx, x+ δx].

(d) Montrer que :

∃δ > 0 : ∀y ∈ [0, 1], ∃x ∈ [0, 1] : ∀z ∈ [0, 1], |z − y| ≤ δ =⇒ z ∈ Jx.

(e) En déduire qu’il existe n ∈ N∗ et x1, . . . , xn ∈ [0, 1] tels que [0, 1] =

n⋃
k=1

Jxk
.

(f) Aboutir à une contradiction, en considérant la fonction f =

n∑
k=1

f2
xk

.

1La notation p ∤ b signifie : p ne divise pas b.
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3 Problème – Nombre de rotation de Poincaré

On désigne par H l’ensemble des fonctions f : R → R continues et strictement croissantes,
telles que f(x+ 1) = f(x) + 1, pour tout x ∈ R.

3.1 Structure de groupe de H

1. Montrer que si f ∈ H, f est une bijection de R dans R.

2. Montrer que H est un groupe, pour la loi de composition ◦.

Dans la suite, si f ∈ H et si n ∈ Z, on notera fn le n-ème itéré de f pour la loi ◦.

3.2 Définition de ρ(f)

Soit f ∈ H. On note ϕ : R → R l’application définie par ϕ(x) = f(x)− x.

3. Montrer que ϕ est périodique de période 1.

4. Montrer que, pour tous x, y ∈ R, −1 < ϕ(y)− ϕ(x) < 1.
On pourra d’abord traiter le cas où x ≤ y < x+ 1.

Pour tout n ∈ Z, on note mn = min
{
fn(x)− x, x ∈ R

}
et Mn = max

{
fn(x)− x, x ∈ R

}
.

5. Justifier la bonne définition de mn et Mn, pour tout n ∈ Z.

6. Montrer que pour tous n, p ∈ N∗, mn +mp ≤ mn+p ≤ Mn+p ≤ Mn +Mp.

7. En déduire que pour tous k, n ∈ N∗,
mk

k
≤ Mn

n
.

8. Montrer que, pour tout n ∈ N∗, Mn −mn < 1.

9. Déduire des deux questions précédentes que sup
{mn

n
, n ∈ N∗} = inf

{Mn

n
, n ∈ N∗}.

On note ρ(f) cette valeur commune et on l’appelle nombre de rotation de f .

10. Montrer que, pour tout n ∈ N∗, il existe xn ∈ R tel que fn(xn) = xn + nρ(f).

11. Montrer que, pour tout x ∈ R et pour tout n ∈ N∗, −1 < fn(x)− x− nρ(f) < 1.

En déduire que, pour tout x ∈ R,
fn(x)

n
→ ρ(f), quand n → +∞.

3.3 Premières propriétés de ρ(f)

Soit f ∈ H.

12. Soit g dans H telle que g ◦ f = f ◦ g. Montrer que ρ(g ◦ f) = ρ(g) + ρ(f).

13. Montrer que, pour tout n ∈ Z, ρ(fn) = nρ(f).

14. Montrer que ρ(f) est nul ssi f a un point fixe.
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On rappelle qu’on désigne par U l’ensemble des nombres complexes de module 1.
On définit f : U → U par f(e2iπθ) = e2iπf(θ), pour tout réel θ.

15. Justifier que f est bien définie et que c’est une bijection.

16. Soit α ∈ R. On définit l’application Rα : U → U, z 7→ e2iπαz.
Montrer qu’il existe une application tα ∈ H telle que tα = Rα et ρ(tα) = α.

17. On suppose que ρ(f) ∈ Q. Montrer2 que f admet une orbite périodique, c’est-à-dire
qu’il existe z ∈ U et p ∈ N∗ tels que f

p
(z) = z.

18. Montrer réciproquement que si f admet une orbite périodique, alors ρ(f) ∈ Q.

3.4 Théorème de Poincaré

Soit f ∈ H.

• Si x ∈ R, on note Λf (x) =
{
fn(x) +m, (n,m) ∈ Z2

}
.

• Si z ∈ U, on note Λf (z) =
{
f
n
(z), n ∈ Z

}
.

On dit qu’une partie A de U est dense dans U si, pour tout z ∈ U, il existe (un) ∈ AN

convergeant vers z.

19. Montrer que les conditions suivantes sont équivalentes :

i) Il existe un réel x tel que Λf (x) est dense dans R.

ii) Il existe un nombre complexe z dans U tel que Λf (z) est dense dans U.

On dit dans ce cas que f a une orbite dense. On suppose désormais que cette condition est
satisfaite et que α = ρ(f) ∈ R \ Q.

20. On fixe un réel x tel que Λf (x) est dense dans R. On note Λ =
{
nα+m, (n,m) ∈ Z2

}
.

On définit l’application h par

h :

{
Λf (x) → Λ

fn(x) +m 7→ nα+m,

Montrer que h est bien définie et que c’est une bijection strictement croissante.

21. Montrer que h se prolonge de façon unique en une bijection continue de R dans R.

22. On note encore h ce prolongement. Montrer3 que h ◦ f = tα ◦ h.

2Ici aussi, f
p

désigne le p-ème itéré de f pour la loi ◦. On admet que f
p
= fp.

3C’est le théorème de Poincaré. On dit que f et tα sont topologiquement conjuguées. En 1932, A. Denjoy
a montré que si ρ(f) ∈ R \ Q et si f est de classe C2, alors elle a une orbite dense.
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