MPSI 3 Devoir surveillé 2025-2026

DS 4 de mathématiques — Corrigé

1 Exercice — Equation de d’Alembert

1. En prenant 2 = y = 0 dans la propriété vérifiée par f, on a f(0)+ f(0) = 2£(0)f(0).
Donc, 2f(0) = 2f(0)?. Donc, f(0) =0 ou 1.

De plus, si f(0) =0, en prenant = quelconque et y = 0 dans la propriété, on a :

Ve €R, f(x)+ f(x) = 2f(x)f(0) =0
et donc f est identiquement nulle.

2. En prenant x = 0 et y quelconque, on a :

Yy e R, fly) + f(—y) = 2£(0)f(y),
et donc, comme f(0) =1, f(y) = f(—y), pour tout y € R. Donc, f est paire.

3. Comme f est continue en 0 et que f(0) = 1, il existe § > 0 tel que, pour tout
x € [=6,0],|f(xz) — 1] <1/2. Pour un tel z, on a en particulier f(z) > 1/2 > 0.

5 )
Or, pour tout ¢ € N, 5 € [—4,d]. Done, pour tout ¢ € N, f (5) > 0.

4. On montre cette égalité par récurrence sur ¢ € N, le cas ¢ = 0 étant vrai par définition

de 6.

) 0
Soit ¢ € N tel que f (E) = cos <§> On utilise la propriété vérifiée par f avec
r =1y = —— On obtient :

2q+1°

0 5\
cos (ﬁ) +1=2f (2q+1> )

0 0\’ L _ 0
Donc, cos (5) =2f (§> — 1. Par formule de duplication, on a aussi cos (E) =

0\’ 5 0 .
2f cos <F> — 1. Dongc, f <F> = Zcos (ﬁ) Mais les deux membres
sont positifs : le premier d’aprés la question précédente ; le deuxiéme parce que

)
0 € [0,7/2]. Donc, f (ﬁ) = cos (ﬁ , ce qui conclut la récurrence.



(n+1)6
24

() o (5) = () (5)

Ainsi, pour tout n € N,

() o () (8) 1 (2)

On reconnait bien une relation de récurrence linéaire d’ordre 2.

etyzi On a:

5. Soit n € N. On utilise la relation vérifiée par f avec z = 50"

0
6. Le polynome caractéristique de la récurrence linéaire est X? — 2.X cos <§> + 1. Le

2
discriminant est A = 4 (0052 (ﬁ) — 1) = —4sin® (ﬁ) = (22' sin (£)> . Les
24 24 24

deux racines sont donc 237, Tl existe donc deux constantes A i € R telles que,

pour tout n € N :
noy\ \ no . (nb
f 9¢ | =Acos | 5p + psin % )

Pour n = 0, on doit avoir 1 = f(0) = A. Donc, A = 1. Puis, en égalisant les valeurs

0 0
pour n = 1, on obtient psin (ﬂ) =0, et donc p =0, car % €0, 7/2].

24
7. L’ensemble A = {%, (n,q) € Zx N} est dense dans R. En effet, si z € R, L 25” €A,
.o 272
pour tout ¢ € N* et T — x, quand ¢ — +00, par encadrement.

6
D’aprés la question précédente, I'égalité f(z) = cos (?> a lieu pour tous les = € A.

Si maintenant = € R, on peut trouver (z,,) € AN de limite x. On a pour tout n € N,

f(x,) = cos (%9) Donc, par continuité, f(z) = cos <%9)

Avec § comme dans la question 3, on suppose maintenant que f(J) > 1 ; on peut alors
trouver 6 € R tel que chf = f(0). On montrerait de fagon analogue que : Vz € R, f(z) =

x6
ch | — ).
8. D’apres ce qui précéde, si f est dans &, alors

e Ou bien f est la fonction nulle ;

e Ou bien il existe a € R, tel que Vo € R, f(x)
e Ou bien il existe 8 € Ry tel que Vz € R, f(z) = ch(Bx).

cos(ax) ;
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Réciproquement :

e La fonction nulle est bien dans £.

e Soit « € Ry. Siz,y € R, on a — par formule d’addition —
cos(ax + ay) + cos(ax — ay) = 2 cos(ax) cos(ay).

Et x +— cos(ax) est continue ; donc elle est dans .
e Soit 5 €R,. On a:

2

2 ch(Bx) ch(By) = 2 (eﬂw 4_2@51) (eﬁy zegy) |

On constate que les deux expressions sont égales en développant.

Ceci montre que x — ch(fx) est dans € (elle est bien continue).

Ainsi, 'ensemble £ est exactement formé par les fonctions données en début de
question.

ch(Bz + fy) + ch(Bz — By) =

Exercice — Idéaux maximaux d’un anneau

. On sait que les sous-groupes de (Z, +) sont les nZ, o n € N. Donc, si I est un idéal
de Z, il est de cette forme.

Soit n € N. Soit a € Z, soit x € nZ. Comme x est un multiple de n, alors ax aussi.
Donc, ax € nZ. Ceci montre que nZ est un idéal de Z.

Donc, les idéaux de Z sont exactement les parties nZ, ou n € N.

. Soit I un idéal de A contenant un inversible z de A. Soit y € A. Alors, yz ™' € A
et donc y = (yz~")x € I, par la deuxiéme propriété satisfaite par les idéaux. Ceci
montre que I C A ; et donc nécessairement que I = A.

. Soit I un idéal de A, avec A un corps. Remarquons déja que 0 € I car I est un
sous-groupe additif de A. Il y a alors deux cas :

e Ou bien I = {0} ; on vérifie immédiatement qu’il s’agit bien d’un idéal de A
(car Va € A;a x 0 =0).

e Ou bien il existe a non nul dans . Alors, comme A est un corps, a est inversible.
D’aprés la question précédente, I = A (qui est bien un idéal de A).

Bilan : les idéaux de A, quand A est un corps, sont I = {0} et I = A.



4.

D.

On remarque que, si n,m € N, nZ C mZ ssi m divise n. Au vu de la classification
des idéaux de Z, on en déduit que nZ est un idéal maximal ssim |n — mZ =2
ou mZ = nZ, c’est-a-dire ssi m = 1 ou m = n. Ceci revient & demander que n soit
un nombre premier.
Dong, les idéaux maximaux de Z sont les pZ, o p est un nombre premier.

1

(a) ° 1:IEZ(p).

a c
e Soient z,y € Z,y. On écrit x = 7 ety = 7 o a,c € Zetb,dée N ne sont
pas divisibles par p. Alors

a
rT—Yy=-——== et xy = —.
b

Comme p est un nombre premier, p ne divise pas bd. Donc, v —y,xy € Z).
Donc, Z,) est un sous-anneau de Q.

(b) Soit z = % un inversible de Z,, avec a € Z et b € N* non divisible par p. On

c
peut donc trouver y = — avec ¢, d vérifiant les mémes conditions et zy = 1. On
a donc ac = bd. Comme p ne divise pas bd, il ne divise pas non plus ac ; en
particulier, il ne divise pas a.

. . , .. a - ..
Réciproquement, si x s’écrit 7 avec a € Z, b € N* non divisibles par p, alors
. o : —b
— est son inverse dans Z, (on peut aussi écrire cet inverse — pour forcer le
a —a

dénominateur & étre strictement positif).
Ainsi, les inversibles de Z,y sont les %, avec a € Z, b € N* tels que a, b ne sont
pas divisibles par p.
(c) Soit I un idéal de Z,), distinct de Z,). D’aprés la question 2, I C A\ A*. (en
notant A = Z,))
Or, A\ A* est 'ensemble des %, ol a € Z est divisible par p et ou b € N* n’est
pas divisible par p.
Montrons que A\ A est un idéal de Z,) :
e [l contient 0.

a c
e Siz=—ety=— sont dans A\ A™ (avec p divisant a et b), alors z —y =

b d

d—>b
¢ o = Comme p divise ad — be, v —y € A\ A*.

A . . & ac ..
e Avec les mémes notations pour z, si z = p € Zy), alors vz = i et p divise
ac, donc xzz € A\ A™.

Ainsi, I'idéal I est inclus dans 'idéal A\ A*. Cet idéal A\ A* est donc I'unique
idéal maximal de Z;).




6.

(a)

Soit f € A*. Notons g son inverse. Alors, fg est la fonction constante égale a
1. En particulier, pour tout = € [0,1], f(x) # 0. Donc, f ne s’annule pas.

Réciproquement, si f ne s’annule pas, ? est continue et est l'inverse de f dans

A.

Les inversibles de A sont donc les fonctions qui ne s’annulent pas sur [0, 1].

e La fonction nulle est dans I,.

e Sif, g€l alors (f —g)(x) = f(z) —g(x) =0et donc f — g € I,.

o SifeletheA, alors (fh)(z) = f(z)h(x) =0 et donc fh € I.
Ceci montre que I est un idéal de A.
Considérons un idéal J contenant strictement /.. On peut donc trouver f € J tel
que f(z) # 0. On note g la fonction constante égale a f(z). Alors, (9—f)(x) =0
donc g — f € I, C J. Donc, g € J. Comme g est un inversible de A, J = A.
Ceci montre que I, est maximal.

Comme I est maximal et qu’il est distinct de [, il n’est pas inclus dans I,.
On peut donc trouver f, € I tel que f,(z) # 0. Par continuité de f,, on peut
trouver 0, > 0 tel que

Vy e [0,1], |y — 2| < 6. = fuly) #0.

On raisonne par 'absurde. Si I’énoncé est faux, on peut trouver, pour tout
n € N*, un élément y, € [0, 1] tel que, pour tout = € [0, 1], on peut trouver un
z € [0, 1] vérifiant |z — y,| < 1/n mais |z — x| > 6.

Par le théoréme de Bolzano-Weierstrass, la suite (v, )nen @ une valeur d’adhérence
¢ €[0,1]. On prend x = ¢ ci-dessus ; il existe donc, pour tout n € N*, z,, € [0, 1]
tel que

1
|2 — Yn| < - mais |z, — £| > d,.

1
Par inégalité triangulaire inversée, on a donc pour tout n € N* : |y, —¢| > d,——.
n

)
Et donc, pour n suffisamment grand, |y, — ¢| > é ; ceci contredit le fait que ¢
est une valeur d’adhérence de (y,,) et conclut.

On considére > 0 comme dans la question précédente. On considére un entier

1 o j+1
N tel que N <. Péur tout j € [0, N — 1], on note J; = {%, %1 Si z est

dans J;, on a |z — %\ < 4§, donc il existe x; € [0,1] tel que J; C I,;. Comme

N-1 N-1
0.1 =J 7 0.1=J L,
=0 =0

Soit « € [0, 1]. D’aprés la question précédente, x € I pour un certain k € [[1,n].
On a f(x) > f2 (z) > 0 car x € I;. Donc, f ne s’annule pas en z. Ceci montre
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3.1

que f € A*.

De plus, f € I. En effet, tous les f,, sont dans I ; donc les f:fk aussi (en utilisant
la deuxiéme propriété des idéaux), donc f aussi (par stabilité de I par somme).
Ainsi, I contient un inversible de A. Donc, I = A : c’est absurde. Donc, il
existe x € [0, 1] tel que I = [,.

Probléme — Nombre de rotation de Poincaré

Structure de groupe de H

. Par récurrence immédiate, on montre que f(z + n) = f(z) + n, pour tout x € R et

tout n € N. En particulier, f(n) = f(0) +n — 400, quand n — +oo. Par théoréme
de la limite monotone, on sait que f a une limite en 400 ; comme ( f (n)) tend vers
+00, la limite de f en +00 est nécessairement +oo.

De méme, pour tout n € N, f(—n) = f(0)—n et donc f(—n) — —oo quand n — —oc.
Par le méme argument, la limite de f en —oo est —oo.

Par le théoréme des valeurs intermédiaires, on en déduit que f(R) = R. Comme f
est strictement croissante, elle est injective. Donc, f : R — R est une bijection.

Soient f,g € H. Alors, g o f est strictement croissante et continue par composition
d’applications strictement croissantes et continues. De plus, si x € R,

(gof)lx+1)=g(f(x+1))=g(f(x) +1) =g(f(z)) +1=(go f)(z) + 1.

Ainsi, go f est dans H.

De plus, si f € H, f' est continue et strictement croissante de R dans R (par le
cours). Soit y € R. On l'écrit y = f(x) avec z € R. On sait que f(z+1) = f(x)+ 1.
En prenant l'image par f~' : 4+ 1 = f!'(f(x) + 1) ; clest-a-dire f*(y) +1 =
fY(y+1). Donc, f~! est dans H.

Enfin, H est non vide : il contient ’application idg.

Ceci montre que H est un sous-groupe du groupe des bijections de R ; et donc un
groupe pour o.

3.2 Définition de p(f)
3. Soit x € R. On a:

dr+1)=flz+1)—(x+1)=fla)+1—2—1= f(x) —x = ¢(x).

Donc, ¢ est périodique de période 1.

4. Soient x,y € R tels que z <y < x + 1. Comme f est strictement croissante, on a

fla) < fly) < fle+1) = flz)+1



donc, 0 < f(y) — f(x) < 1. De plus, —1 < x — y < 0. On additionne les inégalités ;
par définition de ¢, on a alors —1 < ¢(y) — ¢(z) < 1.

Considérons maintenant =,y € R quelconques. On peut trouver n € Z tel que
x<y+n<x+1 (prendre n = —|y — x|). On peut donc appliquer le raisonnement
précédent et on a —1 < ¢(y +n) — ¢(z) < 1. Mais comme ¢ est 1-périodique, on a
finalement —1 < ¢(y) — ¢(x) < 1.

. Soit n € Z. Comme f" € H, la fonction x — f"(z) — x est 1-périodique (c’est le ¢
de la question précédente, avec f" au lieu de f).

En particulier, {f"(z) — z,x € R} = {f"(z) — z,z € [0,1]}. Comme f" — idg est
une fonction continue sur le segment [0, 1], 'ensemble {f"(z) — =,z € [0, 1]} admet
un minimum et un maximum par le théoréme des bornes atteintes. Donc, m,, et M,
sont bien définies.

. Soient n,p € N*. Comme m,, < M, et m, < M,, on a bien m, +m, < M, + M,,.

Soit x € R. On remarque que f""?(z) —x = (f"(fp(x)) — f2(z)) + (f*(z) — ). Or,
my < (f"(fP(2)) = fP(x)) < M, et m, < fP(z) —x < M,. On ajoute les inégalités :

Ve € Rymy, +m, < f"P(z) —x < M, + M,,.

Par définition de my,1, et M,,, on a donc m,, + m, < myy, et My, < M, + M,,
ce qui conclut.

. Soient n,k € N*. Par la question précédente, on a 2m; = my + my < mo,. Puis
3my = 2my + my, < mayp + my, < mayg, etc. Par une récurrence immeédiate finie, on
montre que nmy < m,,. Par un raisonnement analogue, on a aussi My, < kM,,.

Comme my, < My,, on en déduit que nm; < kM,,. Donc, en divisant par kn > 0 :
mg Mn
LA il

k= n
. Soit n € N*. On note ¢,, = f" — idg. Par la question 4, on a ¢, (y) — ¢,(z) < 1 pour
tous z,y € R. En prenant pour x et y les points ol ¢,, atteint son min et son max,

on obtient M,, — m,, < 1.

my, M,
. D’aprés la question 7, pour tous k,n € N*, T < —. A k fixé, on prend a droite
n
m
Iinf sur n ; on a donc pour tout k € N, Yk < inf{—n,n € N*}. On prend
n

maintenant le sup sur k£ dans le membre de gauche :
M,
sup (=5 k€ N} inf {2 ne N},
n

m M, 1

Par la question précédente, on a aussi — > — — —. Et donc
n n n
u, 1

sup{—kEN}>m7> Ezinf{%,peN*}—%.

n

~J



10.

11.

3.3

12.

13.

M, 1
L’inégalité sup {%, ke N*} > inf {—p,p € N*} — — étant valable pour tout n € N*,
P n
M,
on a donc sup {%, ke N} >inf {—2 pe N*}. Dou l'égalité.
p

My, M,,
Soit n € N*. La fonction f" —idg atteint les valeurs m,, et M,,. Or, — < p(f) < —
n n

; par le théoréme des valeurs intermédiaires, elle atteint donc aussi la valeur np(f) ;
il existe donc z,, € R tel que f"(z,) = z, + np(f).

Soit n € N*. Notant ¢, = f" — idg, on sait que pour tous z,y € R, —1 < ¢, (z) —
¢n(y) < 1. En prenant pour y le x,, de la question précédente, on a donc :

VeeR, -1 < f"(z) —x —np(f) < L.

On en déduit que, pour tout x € R et tout n € N* :

_1+x+p(f)< f™(z) - 1+

f" ()

+ p(f)-

n

— p(f)-

Par théoréme d’encadrement,

Premiéres propriétés de p(f)

On fixe x € R. Par la question 11, on a

1< fM(x) —xz—np(f) < 1.

En prenant la méme inégalité pour g, au point f"(x), on a :

—1<g"(f"(x)) = f*(x) = nplg) < 1.

En sommant les inégalités :
=2 <g"(f"(x)) = n(p(f) + p(g)) < 2,

9@ )+ plg).

Mais comme g et f commutent, on a ¢"(f"(z)) = (go f)"(x). Donc, par la question

(g0 f)"(=)

11, on a aussi ————= — p(g o f). Par unicité de la limite, on a 'égalité :
n
plgo f) = p(f)+r(g).

Le sous-groupe (f) C H formé des itérés de f pour o est abélien. La question
précédente montre que p : (f) — R est un morphisme de groupes (pour la loi o au
départ et la loi o & l'arrivée).

Par propriétés générales d’'un morphisme (I'image du n-éme itéré est le n-éme itéré
de I'image), on en déduit que p(f™) = np(f), pour tout n € Z.

ce qui montre que
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14.

15.

16.

17.

18.

3.4

19.

Supposons que f a un point fixe zg. Alors, pour tout n € N, f"(xg) = ¢ et donc,

M:@—)O. Donc, p(f) = 0.
n n

Réciproquement, si p(f) = 0, on peut trouver par la question 10 un réel z; tel que
f(x1) =214+ 1 x p(f) = x1. Donc, 1 est un point fixe de f.

2imwl 2iml — e2i7r0/

Tout élément de U peut s’écrire e“™” pour un certain réel €. De plus, si e : ,
alors # — ¢ € Z. On doit donc montrer que si § € R et si k € Z, alors ™) =
e2™OFR) Or, on a déja vu que f(0) + k = f(6) + k, pour tout k € Z. Ainsi,

e2i7rf(9+k) €2i7rf(9)+2ik7r _ 62i7rf(0).

Ceci montre que f est bien définie.

Soit w € R. On peut écrire w = ¢ Comme f est surjective, on peut trouver
0 € R tel que f(0) = a. Alors, w = f(e*™). Donc, f est surjective.

Soient z, 2’ € U tels que f(z) = f(2). On peut écrire z = %™ et 2/ = 2™ avec
0,0 € [0,1]. Comme *™@ = 2mf) £(g"y — £(9) € Z. Comme f(1) = f(0) + 1
et f est strictement croissante, on a nécessairement § = #', donc z = 2’. Ainsi, f est
injective.

Finalement, on a montré la bijectivité de f.

2T

On note t, application définie de R dans R par t,(z) = = + a. Elle est continue et
strictement croissante et, pour tout z € R, t,(x +1) =z + 1+ a = fo(z) + 1. Donc,
t, est dans H.

. . (0

Par récurrence immeédiate, on a t.(0) = na, pour tout n € N*. Ainsi, a(0) — «,
n

quand n — +o00. Ceci montre que p(t,) = a.

Enfin, 7, vérifie par définition 7, (e*™0) = ¥la(0) = 2im(0+a) — p2ima 2ind hour tout

0 € R. Ceci montre que t, = R,.

On écrit p(f) = 9 avec qg € Zet p € N*. Par la question 10, avec n = p, on
p

peut trouver z, € R tel que f’(z,) = x, + pp(f) = 2, + ¢. Comme ¢ € Z, on a
e¥m@nta) — 27 qone fp(eQ“””p) — 2™ Ainsi, z = €™ est un point fixe de f".
Réciproquement, on suppose que f admet un point fixe z = ¢*™. On a Tp(z) =
2O done fP(0) — 6 € Z. Soit ¢ € Z tel que fP(f) = 0 + q. Par récurrence
fm(9)

—— = ¢. Done, p(f") = q.

immédiate, f"?(0) = 6 + nq, pour tout g € N. Ainsi,

Par la question 13, on en déduit que p(f) = 1 ¢ Q.
p

Théoréme de Poincaré

Supposons qu'’il existe un réel x tel que Af(z) est dense dans R. On note z = e*7".

Soit w € U, qu'on écrit w = e*™. Par hypothése, on peut trouver (u,) € Af(z)N



20.

telle que u,, — 6. Alors, par continuité, e*™n — %™ — . De plus, pour tout
n € N, u, s'écrit f(x) + m, o;} Pn,Mn € Z. Done, e?min = o2/ (@) — (),
1T Un

Ainsi, la suite de terme général e
dense dans U.
Réciproquement, on suppose que A?(z) est dense dans U. Soit # € R. On peut

est a valeurs dans Ay. Ceci montre que Ay est

trouver une suite (z,) € A?(Z)N convergeant vers ™. Par le lemme ci-dessous, on
peut trouver une suite d’arguments des z,, convergeant vers un argument de >
donc vers un réel de la forme 276 + 2km, avec k € Z. Comme As(z) est 'ensemble
des arguments des éléments de A?(z) divisés par 2w, on en déduit qu’il existe une
suite (6,,)nen convergeant vers 6 + k. Alors la suite (6, — k) est a valeurs dans Ag(x)

et converge vers 6.

Lemme. Si (z,) € UN converge vers z € U, on peut trouver une suite d’arguments

(6,) des z, convergeant vers un argument de z.

Supposons dans un premier temps que Re(z) > 0. Alors, pour n assez grand,
Im(z,) Im(z) , o

Re(z,) > 0 et Arctan — Arctan ; on a bien une suite d’arguments
Re(z,) Re(z)

de z, convergeant vers un argument de z.

On peut ensuite se ramener a ce cas. Si z, — 2z, alors — — 1. On trouve donc
z

z
une suite (6,) d’arguments de — tendant vers un argument de 1 ; en notant  un

z
argument de z, on a alors que la suite (6,, + 0) converge vers un argument de z ; et
0, + 0 est un argument de z,.

Soient (n,m), (n',m’) € Z2, tels que f™(z)+m = f™ (x)+m’. Sans perte de généralité,
on peut supposer n’ > n et on a :

Fr () = [ () € Z

En notant 2’ = f*(z) et 2/ = ™ on a donc ?n_n/(z') = z'. Comme p(f) ¢ Q,
f n’a pas d’orbite périodique d’aprés la question 18. Donc, n = n’, puis m = m/.
Ainsi, h est bien définie.

Comme o = p(f) est irrationnel, Papplication ¢ : Z*> — A, (n,m) + na + m est
une bijection. On en déduit que h est une bijection, dont la bijection réciproque est
donnée par nao +m — f"(x) + m (bien définie).

Montrons la stricte croissance. Soient n,m,n’,m’ € Z tels que

f"(z)+m< f”l(ﬁ) +m'.

On compose par f™ ™ et on utilise la stricte croissance de f et le fait que f (y+k)=
fly) +ksiyeRetkeZ Ona:

(@) +m < f2 ) +m.

10



21.

En réutilisant la premiéere inégalité, on en déduit que :

(@) +2m < f2"z) +2m.
On recompose par f”/’” pour obtenir :

(@) +2m < 27 (x) 4 2m
De nouveau, la premiére inégalité permet d’obtenir :

fr(x) +3m < f 72 (x) + 3m.
Par une récurrence immeédiate, on montre que :

VEk € N*, f™(z) + km < fE'=6=Dn () 4 k.

Le membre de gauche est équivalent a km quand k — +oo ; celui de droite est

()

équivalent a k(n' — n)a + km' (méme sin’ —n < 0 car on a aussi —= — p(f)
i

quand i tend vers —oo ; utiliser f~1). Donc, m < (n' —n)a +m’. On a bien montré
que h(f™(z) +m) < h(f™ (z) +m’). L’inégalité est en fait stricte puisqu’on sait déja
que h est injective. Donc, h est strictement croissante.

Considérons un prolongement continu de h sur R. Soit y € R. On peut trouver
une suite (u,) & valeurs dans Ay(z), convergeant vers y. Alors h(u,) — h(y) par
continuité ; ceci montre qu'un prolongement continu de h sur R est entiérement
déterminé par h|Af(x), d’ott 'unicité.

Pour D'existence, il est plus agréable de définir I’extension ainsi :

Vy € R, h(y) = sup{h(z);z € As(x), 2z < y}.

e Ceci est bien défini. En effet, la partie considérée ci-dessus est non vide par
densité de Ay(x) et elle est majorée par n’'importe quel h(w), ot w € Ay(z) est
strictement plus grand que y.

e C’est bien une extension de h. En effet, h est strictement croissante sur Az(x).
Donc, si y € Af(x), le sup est un max, obtenu en z = y.

e [’extension de h ainsi définie sur R est strictement croissante. En effet, si
Y1 < Yo, on peut trouver wy,ws € Ag(x) tel que y; < wy < wy < yo. Comme
h(wy) majore tous les h(z) avec z € Ag(x) et z < yy, on a h(y1) < h(wy). Et
par définition de h(ys), on a h(yz) > h(ws). D’ot h(y;) < h(ys).

e Cette extension de h est continue. Sinon, par le théoréme de la limite monotone,
on pourrait trouver un intervalle non trivial de R disjoint de I'image de h ; ce
n’est pas possible puisque h(As(z)) = A est dense dans R (c’est un sous-groupe
de R engendré par 1 et un irrationnel).
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e Les limites de h en f00 sont +00. Ces limites existent par théoréme de la limite
monotone ; si 'une ou l'autre était finie, I’ensemble image ne serait pas dense

dans R.
Le prolongement ainsi défini de h a R est donc une bijection continue de R dans R.

Considérons y = f"(x) + m un élément de Ay(x). On a f(y) = f"*'(x) + m, donc
ho fly) = (n+ Do+ m.

D’autre part, h(y) = na +m et donc t, o h(y) = (n+ 1)a + m.

Ainsi, les restrictions a A¢(z) de ho f et t, o h coincident. Comme h : R — R est
continue et que As(z) est une partie dense de R, on a ho f = t, 0h, par un argument
désormais bien connu.
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