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DS 4 de mathématiques – Corrigé

1 Exercice – Équation de d’Alembert
1. En prenant x = y = 0 dans la propriété vérifiée par f , on a f(0)+ f(0) = 2f(0)f(0).

Donc, 2f(0) = 2f(0)2. Donc, f(0) = 0 ou 1.
De plus, si f(0) = 0, en prenant x quelconque et y = 0 dans la propriété, on a :

∀x ∈ R, f(x) + f(x) = 2f(x)f(0) = 0

et donc f est identiquement nulle.

2. En prenant x = 0 et y quelconque, on a :

∀y ∈ R, f(y) + f(−y) = 2f(0)f(y),

et donc, comme f(0) = 1, f(y) = f(−y), pour tout y ∈ R. Donc, f est paire.

3. Comme f est continue en 0 et que f(0) = 1, il existe δ > 0 tel que, pour tout
x ∈ [−δ, δ], |f(x)− 1| ≤ 1/2. Pour un tel x, on a en particulier f(x) ≥ 1/2 > 0.

Or, pour tout q ∈ N,
δ

2q
∈ [−δ, δ]. Donc, pour tout q ∈ N, f

(
δ

2q

)
> 0.

4. On montre cette égalité par récurrence sur q ∈ N, le cas q = 0 étant vrai par définition
de θ.
Soit q ∈ N tel que f

(
δ

2q

)
= cos

(
θ

2q

)
. On utilise la propriété vérifiée par f avec

x = y =
δ

2q+1
. On obtient :

cos

(
θ

2q

)
+ 1 = 2f

(
δ

2q+1

)2

.

Donc, cos
(
θ

2q

)
= 2f

(
θ

2q

)2

−1. Par formule de duplication, on a aussi cos
(
θ

2q

)
=

2f cos

(
θ

2q+1

)2

− 1. Donc, f
(

δ

2q+1

)
= ± cos

(
θ

2q+1

)
. Mais les deux membres

sont positifs : le premier d’après la question précédente ; le deuxième parce que

θ ∈ [0, π/2]. Donc, f
(

δ

2q+1

)
= cos

(
θ

2q+1

)
, ce qui conclut la récurrence.
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5. Soit n ∈ N. On utilise la relation vérifiée par f avec x =
(n+ 1)δ

2q
et y =

δ

2q
. On a :

f

(
(n+ 2)δ

2q

)
+ f

(
nδ

2q

)
= 2f

(
(n+ 1)δ

2q

)
f

(
δ

2q

)
.

Ainsi, pour tout n ∈ N,

f

(
(n+ 2)δ

2q

)
= 2f

(
(n+ 1)δ

2q

)
cos

(
θ

2q

)
− f

(
nδ

2q

)
.

On reconnait bien une relation de récurrence linéaire d’ordre 2.

6. Le polynôme caractéristique de la récurrence linéaire est X2 − 2X cos

(
θ

2q

)
+ 1. Le

discriminant est ∆ = 4

(
cos2

(
θ

2q

)
− 1

)
= −4 sin2

(
θ

2q

)
=

(
2i sin

(
θ

2q

))2

. Les

deux racines sont donc 2e±i θ
2q . Il existe donc deux constantes λ, µ ∈ R telles que,

pour tout n ∈ N :

f

(
nδ

2q

)
= λ cos

(
nθ

2q

)
+ µ sin

(
nθ

2q

)
.

Pour n = 0, on doit avoir 1 = f(0) = λ. Donc, λ = 1. Puis, en égalisant les valeurs

pour n = 1, on obtient µ sin
(
θ

2q

)
= 0, et donc µ = 0, car

θ

2q
∈]0, π/2[.

7. L’ensemble A =
{ n
2q
, (n, q) ∈ Z×N

}
est dense dans R. En effet, si x ∈ R,

⌊2qx⌋
2q

∈ A,

pour tout q ∈ N∗ et
⌊2qx⌋
2q

→ x, quand q → +∞, par encadrement.

D’après la question précédente, l’égalité f(x) = cos

(
xθ

δ

)
a lieu pour tous les x ∈ A.

Si maintenant x ∈ R, on peut trouver (xn) ∈ AN de limite x. On a pour tout n ∈ N,

f(xn) = cos

(
xnθ

δ

)
. Donc, par continuité, f(x) = cos

(
xθ

δ

)
.

Avec δ comme dans la question 3, on suppose maintenant que f(δ) ≥ 1 ; on peut alors
trouver θ ∈ R tel que ch θ = f(δ). On montrerait de façon analogue que : ∀x ∈ R, f(x) =

ch

(
xθ

δ

)
.

8. D’après ce qui précède, si f est dans E , alors

• Ou bien f est la fonction nulle ;

• Ou bien il existe α ∈ R+ tel que ∀x ∈ R, f(x) = cos(αx) ;

• Ou bien il existe β ∈ R+ tel que ∀x ∈ R, f(x) = ch(βx).
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Réciproquement :

• La fonction nulle est bien dans E .

• Soit α ∈ R+. Si x, y ∈ R, on a – par formule d’addition –

cos(αx+ αy) + cos(αx− αy) = 2 cos(αx) cos(αy).

Et x 7→ cos(αx) est continue ; donc elle est dans E .

• Soit β ∈ R+. On a :

ch(βx+ βy) + ch(βx− βy) =
eβx+βy + eβx−βy + e−βx+βy + e−βx−βy

2

2 ch(βx) ch(βy) = 2

(
eβx + e−βx

2

)(
eβy + e−βy

2

)
.

On constate que les deux expressions sont égales en développant.
Ceci montre que x 7→ ch(βx) est dans E (elle est bien continue).
Ainsi, l’ensemble E est exactement formé par les fonctions données en début de
question.

2 Exercice – Idéaux maximaux d’un anneau
1. On sait que les sous-groupes de (Z,+) sont les nZ, où n ∈ N. Donc, si I est un idéal

de Z, il est de cette forme.
Soit n ∈ N. Soit a ∈ Z, soit x ∈ nZ. Comme x est un multiple de n, alors ax aussi.
Donc, ax ∈ nZ. Ceci montre que nZ est un idéal de Z.
Donc, les idéaux de Z sont exactement les parties nZ, où n ∈ N.

2. Soit I un idéal de A contenant un inversible x de A. Soit y ∈ A. Alors, yx−1 ∈ A
et donc y = (yx−1)x ∈ I, par la deuxième propriété satisfaite par les idéaux. Ceci
montre que I ⊂ A ; et donc nécessairement que I = A.

3. Soit I un idéal de A, avec A un corps. Remarquons déjà que 0 ∈ I car I est un
sous-groupe additif de A. Il y a alors deux cas :

• Ou bien I = {0} ; on vérifie immédiatement qu’il s’agit bien d’un idéal de A
(car ∀a ∈ A, a× 0 = 0).

• Ou bien il existe a non nul dans I. Alors, comme A est un corps, a est inversible.
D’après la question précédente, I = A (qui est bien un idéal de A).

Bilan : les idéaux de A, quand A est un corps, sont I = {0} et I = A.
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4. On remarque que, si n,m ∈ N, nZ ⊂ mZ ssi m divise n. Au vu de la classification
des idéaux de Z, on en déduit que nZ est un idéal maximal ssi m | n =⇒ mZ = Z
ou mZ = nZ, c’est-à-dire ssi m = 1 ou m = n. Ceci revient à demander que n soit
un nombre premier.
Donc, les idéaux maximaux de Z sont les pZ, où p est un nombre premier.

5. (a) • 1 =
1

1
∈ Z(p).

• Soient x, y ∈ Z(p). On écrit x =
a

b
et y =

c

d
, où a, c ∈ Z et b, d ∈ N∗ ne sont

pas divisibles par p. Alors

x− y =
a

b
− c

d
=
ad− bc

bd
et xy =

ac

bd
.

Comme p est un nombre premier, p ne divise pas bd. Donc, x−y, xy ∈ Z(p).
Donc, Z(p) est un sous-anneau de Q.

(b) Soit x =
a

b
un inversible de Z(p), avec a ∈ Z et b ∈ N∗ non divisible par p. On

peut donc trouver y =
c

d
avec c, d vérifiant les mêmes conditions et xy = 1. On

a donc ac = bd. Comme p ne divise pas bd, il ne divise pas non plus ac ; en
particulier, il ne divise pas a.
Réciproquement, si x s’écrit

a

b
avec a ∈ Z, b ∈ N∗ non divisibles par p, alors

b

a
est son inverse dans Z(p) (on peut aussi écrire cet inverse

−b
−a

pour forcer le

dénominateur à être strictement positif).
Ainsi, les inversibles de Z(p) sont les

a

b
, avec a ∈ Z, b ∈ N∗ tels que a, b ne sont

pas divisibles par p.

(c) Soit I un idéal de Z(p), distinct de Z(p). D’après la question 2, I ⊂ A \A×. (en
notant A = Z(p))
Or, A \A× est l’ensemble des

a

b
, où a ∈ Z est divisible par p et où b ∈ N∗ n’est

pas divisible par p.
Montrons que A \ A× est un idéal de Z(p) :

• Il contient 0.
• Si x =

a

b
et y =

c

d
sont dans A \ A× (avec p divisant a et b), alors x− y =

ad− bc

bd
. Comme p divise ad− bc, x− y ∈ A \ A×.

• Avec les mêmes notations pour x, si z =
c

d
∈ Z(p), alors xz =

ac

bd
et p divise

ac, donc xz ∈ A \ A×.

Ainsi, l’idéal I est inclus dans l’idéal A \A×. Cet idéal A \A× est donc l’unique
idéal maximal de Z(p).
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6. (a) Soit f ∈ A×. Notons g son inverse. Alors, fg est la fonction constante égale à
1. En particulier, pour tout x ∈ [0, 1], f(x) ̸= 0. Donc, f ne s’annule pas.

Réciproquement, si f ne s’annule pas,
1

f
est continue et est l’inverse de f dans

A.
Les inversibles de A sont donc les fonctions qui ne s’annulent pas sur [0, 1].

(b) • La fonction nulle est dans Ix.
• Si f, g ∈ Ix, alors (f − g)(x) = f(x)− g(x) = 0 et donc f − g ∈ Ix.
• Si f ∈ I et h ∈ A, alors (fh)(x) = f(x)h(x) = 0 et donc fh ∈ I.

Ceci montre que I est un idéal de A.
Considérons un idéal J contenant strictement Ix. On peut donc trouver f ∈ J tel
que f(x) ̸= 0. On note g la fonction constante égale à f(x). Alors, (g−f)(x) = 0
donc g − f ∈ Ix ⊂ J . Donc, g ∈ J . Comme g est un inversible de A, J = A.
Ceci montre que Ix est maximal.

(c) Comme I est maximal et qu’il est distinct de Ix, il n’est pas inclus dans Ix.
On peut donc trouver fx ∈ I tel que fx(x) ̸= 0. Par continuité de fx, on peut
trouver δx > 0 tel que

∀y ∈ [0, 1], |y − x| ≤ δx =⇒ fx(y) ̸= 0.

(d) On raisonne par l’absurde. Si l’énoncé est faux, on peut trouver, pour tout
n ∈ N∗, un élément yn ∈ [0, 1] tel que, pour tout x ∈ [0, 1], on peut trouver un
z ∈ [0, 1] vérifiant |z − yn| ≤ 1/n mais |z − x| > δx.
Par le théorème de Bolzano-Weierstrass, la suite (yn)n∈N a une valeur d’adhérence
ℓ ∈ [0, 1]. On prend x = ℓ ci-dessus ; il existe donc, pour tout n ∈ N∗, zn ∈ [0, 1]
tel que

|zn − yn| ≤
1

n
mais |zn − ℓ| > δℓ.

Par inégalité triangulaire inversée, on a donc pour tout n ∈ N∗ : |yn−ℓ| > δℓ−
1

n
.

Et donc, pour n suffisamment grand, |yn − ℓ| > δℓ
2

; ceci contredit le fait que ℓ
est une valeur d’adhérence de (yn) et conclut.

(e) On considère δ > 0 comme dans la question précédente. On considère un entier

N tel que
1

N
≤ δ. Pour tout j ∈ J0, N − 1K, on note Jj =

[
j

N
,
j + 1

N

]
. Si z est

dans Jj, on a |z − j

N
| ≤ δ, donc il existe xj ∈ [0, 1] tel que Jj ⊂ Ixj

. Comme

[0, 1] =
N−1⋃
j=0

Jj, [0, 1] =
N−1⋃
j=0

Ixj
.

(f) Soit x ∈ [0, 1]. D’après la question précédente, x ∈ Ik pour un certain k ∈ J1, nK.
On a f(x) ≥ f 2

xk
(x) > 0 car x ∈ Ik. Donc, f ne s’annule pas en x. Ceci montre
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que f ∈ A×.
De plus, f ∈ I. En effet, tous les fxk

sont dans I ; donc les f 2
xk

aussi (en utilisant
la deuxième propriété des idéaux), donc f aussi (par stabilité de I par somme).
Ainsi, I contient un inversible de A. Donc, I = A : c’est absurde. Donc, il
existe x ∈ [0, 1] tel que I = Ix.

3 Problème – Nombre de rotation de Poincaré

3.1 Structure de groupe de H

1. Par récurrence immédiate, on montre que f(x + n) = f(x) + n, pour tout x ∈ R et
tout n ∈ N. En particulier, f(n) = f(0) + n→ +∞, quand n→ +∞. Par théorème
de la limite monotone, on sait que f a une limite en +∞ ; comme

(
f(n)

)
tend vers

+∞, la limite de f en +∞ est nécessairement +∞.
De même, pour tout n ∈ N, f(−n) = f(0)−n et donc f(−n) → −∞ quand n→ −∞.
Par le même argument, la limite de f en −∞ est −∞.
Par le théorème des valeurs intermédiaires, on en déduit que f(R) = R. Comme f
est strictement croissante, elle est injective. Donc, f : R → R est une bijection.

2. Soient f, g ∈ H. Alors, g ◦ f est strictement croissante et continue par composition
d’applications strictement croissantes et continues. De plus, si x ∈ R,

(g ◦ f)(x+ 1) = g(f(x+ 1)) = g(f(x) + 1) = g(f(x)) + 1 = (g ◦ f)(x) + 1.

Ainsi, g ◦ f est dans H.
De plus, si f ∈ H, f−1 est continue et strictement croissante de R dans R (par le
cours). Soit y ∈ R. On l’écrit y = f(x) avec x ∈ R. On sait que f(x+ 1) = f(x) + 1.
En prenant l’image par f−1 : x + 1 = f−1(f(x) + 1) ; c’est-à-dire f−1(y) + 1 =
f−1(y + 1). Donc, f−1 est dans H.
Enfin, H est non vide : il contient l’application idR.
Ceci montre que H est un sous-groupe du groupe des bijections de R ; et donc un
groupe pour ◦.

3.2 Définition de ρ(f)

3. Soit x ∈ R. On a :

ϕ(x+ 1) = f(x+ 1)− (x+ 1) = f(x) + 1− x− 1 = f(x)− x = ϕ(x).

Donc, ϕ est périodique de période 1.

4. Soient x, y ∈ R tels que x ≤ y < x+ 1. Comme f est strictement croissante, on a

f(x) ≤ f(y) < f(x+ 1) = f(x) + 1
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donc, 0 ≤ f(y)− f(x) < 1. De plus, −1 < x− y ≤ 0. On additionne les inégalités ;
par définition de ϕ, on a alors −1 < ϕ(y)− ϕ(x) < 1.
Considérons maintenant x, y ∈ R quelconques. On peut trouver n ∈ Z tel que
x ≤ y+ n < x+1 (prendre n = −⌊y− x⌋). On peut donc appliquer le raisonnement
précédent et on a −1 < ϕ(y + n) − ϕ(x) < 1. Mais comme ϕ est 1-périodique, on a
finalement −1 < ϕ(y)− ϕ(x) < 1.

5. Soit n ∈ Z. Comme fn ∈ H, la fonction x 7→ fn(x) − x est 1-périodique (c’est le ϕ
de la question précédente, avec fn au lieu de f).
En particulier, {fn(x) − x, x ∈ R} = {fn(x) − x, x ∈ [0, 1]}. Comme fn − idR est
une fonction continue sur le segment [0, 1], l’ensemble {fn(x) − x, x ∈ [0, 1]} admet
un minimum et un maximum par le théorème des bornes atteintes. Donc, mn et Mn

sont bien définies.

6. Soient n, p ∈ N∗. Comme mn ≤Mn et mp ≤Mp, on a bien mn +mp ≤Mn +Mp.
Soit x ∈ R. On remarque que fn+p(x)− x =

(
fn(fp(x))− fp(x)

)
+
(
fp(x)− x

)
. Or,

mn ≤
(
fn(fp(x))− fp(x)

)
≤Mn et mp ≤ fp(x)− x ≤Mp. On ajoute les inégalités :

∀x ∈ R,mn +mp ≤ fn+p(x)− x ≤Mn +Mp.

Par définition de mn+p et Mn+p, on a donc mn +mp ≤ mn+p et Mn+p ≤ Mn +Mp,
ce qui conclut.

7. Soient n, k ∈ N∗. Par la question précédente, on a 2mk = mk + mk ≤ m2k. Puis
3mk = 2mk +mk ≤ m2k +mk ≤ m3k, etc. Par une récurrence immédiate finie, on
montre que nmk ≤ mnk. Par un raisonnement analogue, on a aussi Mkn ≤ kMn.
Comme mkn ≤ Mkn, on en déduit que nmk ≤ kMn. Donc, en divisant par kn > 0 :
mk

k
≤ Mn

n
.

8. Soit n ∈ N∗. On note ϕn = fn − idR. Par la question 4, on a ϕn(y)− ϕn(x) < 1 pour
tous x, y ∈ R. En prenant pour x et y les points où ϕn atteint son min et son max,
on obtient Mn −mn < 1.

9. D’après la question 7, pour tous k, n ∈ N∗,
mk

k
≤ Mn

n
. À k fixé, on prend à droite

l’inf sur n ; on a donc pour tout k ∈ N∗,
mk

k
≤ inf

{Mn

n
, n ∈ N∗}. On prend

maintenant le sup sur k dans le membre de gauche :

sup
{mk

k
, k ∈ N∗} ≤ inf

{Mn

n
, n ∈ N∗}.

Par la question précédente, on a aussi
mn

n
≥ Mn

n
− 1

n
. Et donc

sup
{mk

k
, k ∈ N∗} ≥ mn

n
≥ Mn

n
− 1

n
≥ inf

{Mp

p
, p ∈ N∗}− 1

n
.
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L’inégalité sup
{mk

k
, k ∈ N∗} ≥ inf

{Mp

p
, p ∈ N∗}− 1

n
étant valable pour tout n ∈ N∗,

on a donc sup
{mk

k
, k ∈ N∗} ≥ inf

{Mp

p
, p ∈ N∗}. D’où l’égalité.

10. Soit n ∈ N∗. La fonction fn−idR atteint les valeurs mn et Mn. Or,
mn

n
≤ ρ(f) ≤ Mn

n
; par le théorème des valeurs intermédiaires, elle atteint donc aussi la valeur nρ(f) ;
il existe donc xn ∈ R tel que fn(xn) = xn + nρ(f).

11. Soit n ∈ N∗. Notant ϕn = fn − idR, on sait que pour tous x, y ∈ R,−1 < ϕn(x) −
ϕn(y) < 1. En prenant pour y le xn de la question précédente, on a donc :

∀x ∈ R,−1 < fn(x)− x− nρ(f) < 1.

On en déduit que, pour tout x ∈ R et tout n ∈ N∗ :

−1 + x

n
+ ρ(f) <

fn(x)

n
<

1 + x

n
+ ρ(f).

Par théorème d’encadrement,
fn(x)

n
→ ρ(f).

3.3 Premières propriétés de ρ(f)

12. On fixe x ∈ R. Par la question 11, on a

−1 < fn(x)− x− nρ(f) < 1.

En prenant la même inégalité pour g, au point fn(x), on a :

−1 < gn(fn(x))− fn(x)− nρ(g) < 1.

En sommant les inégalités :

−2 < gn(fn(x))− n(ρ(f) + ρ(g)) < 2,

ce qui montre que
gn(fn(x))

n
→ ρ(f) + ρ(g).

Mais comme g et f commutent, on a gn(fn(x)) = (g ◦ f)n(x). Donc, par la question

11, on a aussi
(g ◦ f)n(x)

n
→ ρ(g ◦ f). Par unicité de la limite, on a l’égalité :

ρ(g ◦ f) = ρ(f) + ρ(g).

13. Le sous-groupe ⟨f⟩ ⊂ H formé des itérés de f pour ◦ est abélien. La question
précédente montre que ρ : ⟨f⟩ → R est un morphisme de groupes (pour la loi ◦ au
départ et la loi ◦ à l’arrivée).
Par propriétés générales d’un morphisme (l’image du n-ème itéré est le n-ème itéré
de l’image), on en déduit que ρ(fn) = nρ(f), pour tout n ∈ Z.
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14. Supposons que f a un point fixe x0. Alors, pour tout n ∈ N, fn(x0) = x0 et donc,
fn(x0)

n
=
x0
n

→ 0. Donc, ρ(f) = 0.
Réciproquement, si ρ(f) = 0, on peut trouver par la question 10 un réel x1 tel que
f(x1) = x1 + 1× ρ(f) = x1. Donc, x1 est un point fixe de f .

15. Tout élément de U peut s’écrire e2iπθ pour un certain réel θ. De plus, si e2iπθ = e2iπθ
′
,

alors θ − θ′ ∈ Z. On doit donc montrer que si θ ∈ R et si k ∈ Z, alors e2iπf(θ) =
e2iπf(θ+k). Or, on a déjà vu que f(θ) + k = f(θ) + k, pour tout k ∈ Z. Ainsi,

e2iπf(θ+k) = e2iπf(θ)+2ikπ = e2iπf(θ).

Ceci montre que f est bien définie.
Soit w ∈ R. On peut écrire w = e2iπα. Comme f est surjective, on peut trouver
θ ∈ R tel que f(θ) = α. Alors, w = f(e2iπθ). Donc, f est surjective.
Soient z, z′ ∈ U tels que f(z) = f(z′). On peut écrire z = e2iπθ et z′ = e2iπθ

′
, avec

θ, θ′ ∈ [0, 1[. Comme e2iπf(θ) = e2iπf(θ
′), f(θ′) − f(θ) ∈ Z. Comme f(1) = f(0) + 1

et f est strictement croissante, on a nécessairement θ = θ′, donc z = z′. Ainsi, f est
injective.
Finalement, on a montré la bijectivité de f .

16. On note tα l’application définie de R dans R par tα(x) = x + α. Elle est continue et
strictement croissante et, pour tout x ∈ R, tα(x+ 1) = x+ 1+ α = fα(x) + 1. Donc,
tα est dans H.

Par récurrence immédiate, on a tnα(0) = nα, pour tout n ∈ N∗. Ainsi,
tnα(0)

n
→ α,

quand n→ +∞. Ceci montre que ρ(tα) = α.
Enfin, tα vérifie par définition tα(e

2iπθ) = e2iπtα(θ) = e2iπ(θ+α) = e2iπαe2iπθ, pour tout
θ ∈ R. Ceci montre que tα = Rα.

17. On écrit ρ(f) =
q

p
avec q ∈ Z et p ∈ N∗. Par la question 10, avec n = p, on

peut trouver xp ∈ R tel que fp(xp) = xp + pρ(f) = xp + q. Comme q ∈ Z, on a
e2iπ(xp+q) = e2iπxp , donc fp

(e2iπxp) = e2iπxp . Ainsi, z = e2iπxp est un point fixe de fp.

18. Réciproquement, on suppose que fp admet un point fixe z = e2iπθ. On a f
p
(z) =

e2iπf
p(θ), donc fp(θ) − θ ∈ Z. Soit q ∈ Z tel que fp(θ) = θ + q. Par récurrence

immédiate, fnp(θ) = θ + nq, pour tout q ∈ N. Ainsi,
fnp(θ)

n
→ q. Donc, ρ(fp) = q.

Par la question 13, on en déduit que ρ(f) =
q

p
∈ Q.

3.4 Théorème de Poincaré

19. Supposons qu’il existe un réel x tel que Λf (x) est dense dans R. On note z = e2iπx.
Soit w ∈ U, qu’on écrit w = e2iπθ. Par hypothèse, on peut trouver (un) ∈ Λf (x)

N
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telle que un → θ. Alors, par continuité, e2iπun → e2iπθ = w. De plus, pour tout
n ∈ N, un s’écrit fpn(x) + mn où pn,mn ∈ Z. Donc, e2iπun = e2iπf

pn (x) = f
pn
(z).

Ainsi, la suite de terme général e2iπun est à valeurs dans Λf . Ceci montre que Λf est
dense dans U.
Réciproquement, on suppose que Λf (z) est dense dans U. Soit θ ∈ R. On peut
trouver une suite (zn) ∈ Λf (z)

N convergeant vers e2iπθ. Par le lemme ci-dessous, on
peut trouver une suite d’arguments des zn, convergeant vers un argument de e2iπθ,
donc vers un réel de la forme 2πθ + 2kπ, avec k ∈ Z. Comme Λf (x) est l’ensemble
des arguments des éléments de Λf (z) divisés par 2π, on en déduit qu’il existe une
suite (θn)n∈N convergeant vers θ+ k. Alors la suite (θn − k) est à valeurs dans Λf (x)
et converge vers θ.

Lemme. Si (zn) ∈ UN converge vers z ∈ U, on peut trouver une suite d’arguments
(θn) des zn convergeant vers un argument de z.
Supposons dans un premier temps que Re(z) > 0. Alors, pour n assez grand,

Re(zn) > 0 et Arctan
(
Im(zn)

Re(zn)

)
→ Arctan

(
Im(z)

Re(z)

)
; on a bien une suite d’arguments

de zn convergeant vers un argument de z.
On peut ensuite se ramener à ce cas. Si zn → z, alors

zn
z

→ 1. On trouve donc

une suite (θn) d’arguments de
zn
z

tendant vers un argument de 1 ; en notant θ un
argument de z, on a alors que la suite (θn + θ) converge vers un argument de z ; et
θn + θ est un argument de zn.

20. Soient (n,m), (n′,m′) ∈ Z2, tels que fn(x)+m = fn′
(x)+m′. Sans perte de généralité,

on peut supposer n′ ≥ n et on a :

fn−n′
(fn′

(x))− fn′
(x) ∈ Z.

En notant x′ = fn′
(x) et z′ = e2iπx

′
, on a donc fn−n′

(z′) = z′. Comme ρ(f) /∈ Q,
f n’a pas d’orbite périodique d’après la question 18. Donc, n = n′, puis m = m′.
Ainsi, h est bien définie.
Comme α = ρ(f) est irrationnel, l’application ψ : Z2 → Λ, (n,m) 7→ nα + m est
une bijection. On en déduit que h est une bijection, dont la bijection réciproque est
donnée par nα +m 7→ fn(x) +m (bien définie).
Montrons la stricte croissance. Soient n,m, n′,m′ ∈ Z tels que

fn(x) +m < fn′
(x) +m′.

On compose par fn′−n et on utilise la stricte croissance de f et le fait que f(y+ k) =
f(y) + k si y ∈ R et k ∈ Z. On a :

fn′
(x) +m < f 2n′−n(x) +m′.
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En réutilisant la première inégalité, on en déduit que :

fn(x) + 2m < f 2n′−n(x) + 2m′.

On recompose par fn′−n pour obtenir :

fn′
(x) + 2m < f 3n′−2n(x) + 2m′.

De nouveau, la première inégalité permet d’obtenir :

fn(x) + 3m < f 3n′−2n(x) + 3m′.

Par une récurrence immédiate, on montre que :

∀k ∈ N∗, fn(x) + km < fkn′−(k−1)n(x) + km′.

Le membre de gauche est équivalent à km quand k → +∞ ; celui de droite est

équivalent à k(n′ − n)α + km′ (même si n′ − n < 0 car on a aussi
f i(y)

i
→ ρ(f)

quand i tend vers −∞ ; utiliser f−1). Donc, m ≤ (n′ − n)α+m′. On a bien montré
que h(fn(x) +m) ≤ h(fn′

(x) +m′). L’inégalité est en fait stricte puisqu’on sait déjà
que h est injective. Donc, h est strictement croissante.

21. Considérons un prolongement continu de h sur R. Soit y ∈ R. On peut trouver
une suite (un) à valeurs dans Λf (x), convergeant vers y. Alors h(un) → h(y) par
continuité ; ceci montre qu’un prolongement continu de h sur R est entièrement
déterminé par h|Λf (x), d’où l’unicité.
Pour l’existence, il est plus agréable de définir l’extension ainsi :

∀y ∈ R, h(y) = sup{h(z); z ∈ Λf (x), z ≤ y}.

• Ceci est bien défini. En effet, la partie considérée ci-dessus est non vide par
densité de Λf (x) et elle est majorée par n’importe quel h(w), où w ∈ Λf (x) est
strictement plus grand que y.

• C’est bien une extension de h. En effet, h est strictement croissante sur Λf (x).
Donc, si y ∈ Λf (x), le sup est un max, obtenu en z = y.

• L’extension de h ainsi définie sur R est strictement croissante. En effet, si
y1 < y2, on peut trouver w1, w2 ∈ Λf (x) tel que y1 < w1 < w2 < y2. Comme
h(w1) majore tous les h(z) avec z ∈ Λf (x) et z ≤ y1, on a h(y1) ≤ h(w1). Et
par définition de h(y2), on a h(y2) ≥ h(w2). D’où h(y1) < h(y2).

• Cette extension de h est continue. Sinon, par le théorème de la limite monotone,
on pourrait trouver un intervalle non trivial de R disjoint de l’image de h ; ce
n’est pas possible puisque h(Λf (x)) = Λ est dense dans R (c’est un sous-groupe
de R engendré par 1 et un irrationnel).
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• Les limites de h en ±∞ sont ±∞. Ces limites existent par théorème de la limite
monotone ; si l’une ou l’autre était finie, l’ensemble image ne serait pas dense
dans R.

Le prolongement ainsi défini de h à R est donc une bijection continue de R dans R.

22. Considérons y = fn(x) +m un élément de Λf (x). On a f(y) = fn+1(x) +m, donc
h ◦ f(y) = (n+ 1)α +m.
D’autre part, h(y) = nα +m et donc tα ◦ h(y) = (n+ 1)α +m.
Ainsi, les restrictions à Λf (x) de h ◦ f et tα ◦ h coïncident. Comme h : R → R est
continue et que Λf (x) est une partie dense de R, on a h◦f = tα ◦h, par un argument
désormais bien connu.
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