
Intégration sur un segment

Jeremy Daniel

After years and years of finding
mathematics easy, I finally reached
integral calculus and came up against
a barrier. I realized that that was as
far as I could go, and to this day I
have never successfully gone beyond it
in any but the most superficial way.

Isaac Asimov, I. Asimov : A Memoir

1 Autres propriétés élémentaires de l’intégrale
On suppose connues les propriétés élémentaires de l’intégrale : linéarité, positivité, relation
de Chasles, croissance, inégalité triangulaire.

Proposition 1.1 (Stricte positivité de l’intégrale)

Soit f une fonction continue sur un segment [a, b]. Si f ≥ 0 et si
∫ b

a

f = 0, alors, f = 0.

Remarque 1.2
Par contraposée, l’intégrale d’une fonction continue positive non identiquement nulle est
strictement positive.

Théorème 1.3 (Inégalité de Cauchy-Schwarz)

Soient f, g continues sur [a, b]. On a
(∫ b

a

fg
)2

≤
∫ b

a

f 2 ×
∫ b

a

g2.

Il y a égalité ssi f et g sont colinéaires.
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2 TFA et formules de Taylor
Théorème 2.1 (Théorème fondamental de l’analyse)
Soit f une fonction continue sur un intervalle I et à valeurs dans K. Soit a ∈ I.

La fonction F , définie sur I par F (x) =

∫ x

a

f est de classe C1 ; c’est l’unique primitive de

f s’annulant en a.

On suppose connues les conséquences de ce théorème sur le calcul intégral : intégration par
parties et formule du changement de variables.

Théorème 2.2 (Formule de Taylor avec reste intégral)
Soit f une fonction de classe Cn+1 sur I, à valeurs dans K. Soit a ∈ I.

Alors, pour tout x ∈ I, f(x) =
n∑

k=0

f (k)(a)

k!
(x−a)k +Rn(x), où le reste intégral Rn(x) vaut

Rn(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt.

Remarques 2.3
− La formule de Taylor avec reste intégral est une formule globale : elle donne la valeur

de f en tout point de l’intervalle, à partir des premières dérivées de f en a et de la
dérivée (n+ 1)-ème.

− C’est aussi une formule exacte : elle donne une égalité et non une inégalité.

− Pour n = 0, on retrouve f(x) = f(a) +

∫ x

a

f ′(t)dt.

Théorème 2.4 (Inégalité de Taylor-Lagrange)
Soit f une fonction de classe Cn+1 sur I, à valeurs dans K. Soit a ∈ I. Alors, pour tout

x ∈ I,
∣∣f(x)− n∑

k=0

f (k)(a)

k!
(x− a)k

∣∣ ≤ |x− a|n+1

(n+ 1)!
Mn+1, où Mn+1 = sup

[a,x]

|f (n+1)|.

Remarques 2.5
− C’est encore une formule globale, mais elle donne seulement une inégalité.
− Pour n = 0, on retrouve |f(x) − f(a)| ≤ |x − a| sup

[a,x]

|f ′|, qui est l’inégalité des

accroissements finis.
− De même qu’il existe une égalité des accroissements finis, il existe aussi – pour les

fonctions à valeurs réelles – une égalité de Taylor-Lagrange à l’ordre n.

Exercice 2.6

Montrer que, pour tout x ∈ R, exp(x) = lim
n→+∞

n∑
k=0

xk

k!
.
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Théorème 2.7 (Formule de Taylor-Young)
Soit f une fonction de classe Cn sur I, à valeurs dans K. Soit a ∈ I. Alors, quand x → a,

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k + o

(
(x− a)n

)
.

Remarques 2.8
− Contrairement aux deux formules précédentes, cette formule est locale : elle donne

une information asymptotique sur f , au voisinage de a.
− On utilisera cette formule pour obtenir des développements limités à tout ordre des

fonctions usuelles, notamment pour résoudre des formes indéterminées de limites.
− La formule reste valable si f est seulement supposée n− 1 fois dérivable au voisinage

de a, avec f (n−1) dérivable en a.

3 Sommes de Riemann
Définition 3.1 (Somme de Riemann à gauche)
Soit f ∈ C

(
[a, b],K

)
. Pour n ∈ N∗, on appelle somme de Riemann (à gauche) d’ordre n

associée à f la somme :

Sn(f) =
b− a

n

n−1∑
k=0

f

(
a+ k

b− a

n

)
.

Remarque 3.2
On peut aussi définir la somme de Riemann d’ordre n à droite d’ordre n associée à f :

S ′
n(f) =

b− a

n

n∑
k=1

f

(
a+ k

b− a

n

)
.

Théorème 3.3

Si f ∈ C
(
[a, b],K

)
, les suites

(
Sn(f)

)
n

et
(
S ′
n(f)

)
n

convergent vers
∫ b

a

f .

Remarque 3.4
La démonstration est plus simple si f est M -lipschitzienne pour un M > 0. On a alors :

∀n ∈ N,
∣∣∣Sn(f)−

∫ b

a

f
∣∣∣ ≤ M

(b− a)2

2n
.

Exemple 3.5

Calculer lim
n→+∞

1

n2

n∑
k=1

√
n2 − k2
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4 Convergence uniforme des fonctions
Définition 4.1 (Norme infinie)
Soit f une fonction continue sur [a, b]. La norme infinie (ou norme uniforme) de f est le
réel, noté ∥f∥∞, défini par ∥f∥∞ = sup

x∈[a,b]
|f(x)|.

Remarque 4.2
Ceci est bien défini par le théorème des bornes atteintes. De plus, il existe un réel x0 ∈ [a, b]
tel que |f(x0)| = ∥f∥∞.

Définition 4.3 (Convergence en norme infinie)
Soit (fn)n∈N une suite de fonction continues sur [a, b], soit f une fonction continue sur [a, b].
On dit que la suite (fn) converge uniformément vers f si ∥fn − f∥∞ → 0.

Remarque 4.4
C’est équivalent à la formule suivante :

∀ε > 0,∃N ∈ N : ∀n ≥ N, ∀x ∈ [a, b], |fn(x)− f(x)| ≤ ε.

La fonction fn se rapproche donc uniformément de la fonction f .

Proposition 4.5
Soit (fn)n∈N une suite de fonctions continues convergeant uniformément vers une fonction

continue f sur [a, b]. Alors,
∫ b

a

fn →
∫ b

a

f .

Remarque 4.6
Cette propriété sera souvent utilisée avec le théorème suivant d’approximation, qu’on dé-
montrera plus tard.

Théorème 4.7 (Weierstrass - HP)
Soit f une fonction continue sur [a, b]. Il existe une suite (fn)n∈N d’application polynomiales
sur [a, b] telle que (fn) converge uniformément vers f .

Exercice 4.8 (Théorème de Riemann-Lebesgue)

Soit f une fonction continue sur [a, b]. Montrer que
∫ b

a

f(t) sin(nt)dt → 0.

4


