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DM 11 - Méthode de Newton et théoreme de d’Alembert-Gauss

1 Méthode de Newton

1.1

2.

3.

. Comme f est €2, |f'| est continue et |f'(x*)| > 0. Notons m; =

Préliminaires

. Par localisation

If'(x™)]
2

asymptotique, on peut trouver h > 0 tel que Vx € [x* — h,x* + h],|f'(x*)| = m;. Comme | f"|
est continue sur le segment [x* — k, x* + h], elle est majorée, par le théoréeme des bornes
atteintes. En notant M, ce majorant, on obtient la deuxieme inégalité.

(a) Montrons d’abord 'unicité. Si P et Q sont deux tels polynomes dans R, [X], R=P—-Q
vérifie R(a) = R(b) = R'(a) = 0. Ceci montre que a est racine de R de multiplicité au
moins 2 et que b est racine de R. Comme degR <2 <2+1, Restnul. Donc P = Q.

Pour I'existence, on peut chercher le polynéme sous la forme
P=f(a)+f(@)(X-a)+C(X-a)

avec C € R. Par construction, on a P(a) = f(a) et P'(a) = f'(a). De plus,

f(b)-fla)-f'(a)(b-a)

Pb)y=fb) < C= b ap?

Ainsi, avec cette valeur de C, P convient.

(b) Notons g : x — f(x) — P(x). Alors g est de classe ¥>. Comme g(a) = g(b) = 0, le
théoréme de Rolle implique I'existence d'un d compris entre a et b tel que g'(d) = 0.
Comme g'(a) = g'(d) = 0, le théoréeme de Rolle implique I'existence d’'un ¢ compris
entre a et d (donc entre a et b) tel que g”(c) = 0, c’est-a-dire f”'(c) = P"(c).

(c) P" estle polyndéme constant égal a 2C. Avec la valeur trouvée plus haut pour C, on a
donc:
2(f(b) - fla) - f'(a)(b- 61))

" _
)= b—a?

C’est équivalent a I'identité demandée.

On peut procéder par une récurrence rapide. Donnons un point de vue légerement différent,
qui permet de deviner la majoration.

Considérons (v,)nen la suite définie par vy = up et Vn e N,v,4 = C vfl. Une récurrence
(immédiate !) montre que pour tout n € N, u, < v,. Calculons maintenant le terme général
vp. Pour tout n e N, v, > 0 et, en passant au logarithme, In v, 1 =InC+2In v,,. Ainsi, la suite
de terme général In v, vérifie une relation de récurrence arithmético-géométrique. La suite
de terme général w, = Inv, +InC est géométrique de raison 2. On a donc:

vneN,Inv,=-InC+2"(nvy+1nC).



1.2

4.

5.

DoncVneN, v, = C_I(Cvo)zn. Comme vy = Uy, cela conclut.

Principe : plutét que de considérer une relation de récurrence en inégalités, on travaille avec
la suite vérifiant le cas d’égalité, dont on peut déterminer le terme général. Cependant, une
récurrence directe est rapide.

Méthode de Newton

La tangente a la courbe représentative de f en x, a pour équation y = f(x,) + (x— x) ' (x5).
Elle intersecte donc I'axe des abscisses quand f(x,) + (x — xn)f’(xn) =0, donc quand x =
X, — f (xn)

f "(xn)
La méthode consiste donc a identifier la courbe représentative de f avec sa tangente a x,, et
de chercher ou s’annule cette tangente. On espére ainsi se rapprocher de plus en plus d'un
véritable zéro de f, en itérant.

, C'est-a-dire quand x = x;41.

A

!
X X X
/ / n+1 "

Par I'identité de Taylor-Lagrange a I'ordre 2, appliquée a la fonction f entre x et x*, on sait
qu’il existe ¢ compris entre x et x* tel que :

(x* — x)%.

F&XH =)+ fx0)x*—x)+

'@
2

Le membre de gauche est nul par définition de x*. On divise par f’(x), supposé non nul et

f’(()JCC)) = x— Ny¢(x). On obtient :

on utilise que

_ _ * f,/(é) * 2
0=x Nf(x)+(x x)+—2f,(x)(x x)“.

C’est équivalent a I'égalité demandée, en remarquant bien str que (x* — x)2 =(x— x*)z.



6. Par construction, si |x — x*| < h, alors | f'(x)| = m; et en particulier f'(x) # 0, donc x € Iy. De

plus, par la question précédente, on a I’existence d'un nombre ¢ entre x et x* tel que :

* (x_X*)Z 11
Ne(x)—x*|= ——— )
INf(x) — x| 27 ()] I (I

Comme ¢ est compris entre x et x*, on a en particulier |¢ — x*| < h et donc | f"(&)| < M. Et
on a déja dit que | f'(x)| = m;. Ces deux inégalités montrent que

M.
INfp(x) —x*| < Ix—x*lz—z.

Notons I I'intervalle [x* — k', x* + h']. Montrons que I est stable par N . Soit x € I. On a donc
|x—x*| < h'. En particulier, |x — x*| < h et, par la question précédente :
INf(x)—x*| < lx—x*PxC<h*xC<T.

En effet, ona C < k'~ L.

Comme l'intervalle I est stable par N, on en déduit que si xy € I, la suite définie par récurrence
pour tout n € N, par x,+1 = N¢(x,) est bien définie, et tous les termes x,, sont dans 1.

De plus, par la question précédente, on a
V€N, |xpe1 = x| = INp(xn) = x*| < |, — x*° x C.
Par la question 3, on en déduit :

VneN,|x, - x* < C 7} (Clxg - x* )%

. Soit xg tel que |xg— x*| < h'. Alors I'inégalité précédente a lieu pour tout n € N et C|xp— x*| <

C x h' < 1. Dés lors, la suite (C|xo — x*|)*" tend vers 0 et donc |x,, — x*| aussi.

Ainsi, pour une telle donnée initiale xj, la méthode de Newton converge vers x*.

1.3 Application : la méthode de Héron

9.

Dans ce cas, la récurrence est donnée par

x2-a
VnEN)xYH'l:xﬂ_ ]
2xp

2 X, + 2
) z 2 . xl’l t+a n Xn
quon peut reecrire comme X4+ = =
2Xxp 2

Interprétation géométrique : déterminer la racine carrée de a, c’est chercher un carré dont
Vaire vaut a. On part d’'un rectangle de cotés xy et al xy, puis on remplace l'un des c6tés par la
moyenne des deux et on itére le processus. Le rectangle se transforme progressivement en carré.



10. On cherche d’abord a estimer les différentes constantes en jeu. On constate que si x = 1,
If'(x)| = f'(x) =2x =2 et f’(x) = 2. Donc, dans la premiére question, on peut prendre i =
M 1
V2-1, m;=2et M, =2. Alors C = 2—2 = 2 et ' = min(v2-1,2) = V2 — 1. Ainsi, si xq est
nmy
compris entre 1 et v2, la méthode de Newton va converger et on a:

2"
Xo— V2
VneN,|xn—\/§|sz(|°2—‘/_|) .

Prenons par exemple xy = 1. On peut majorer grossiéerement |xo — V2| par 1/2 et on a donc :
\/— < 2 _ 2 _ 1_2n+1
| X — 2|—47—_22n+1—2 .

En particulier, si on veut |x, — V2] 107199 il suffit d’avoir :

1
21-2"" < 1100,

In10
C’est équivalenta (1-2"""1)In2 < -100In10, donca 21 -1 > 1001—. Le membre de droite

vaut environ 332 et 2° = 524. Donc n = 8 convient.

On retiendra que la convergence est tres rapide : le nombre de décimales est en gros multiplié
par 2 apres chaque itération.



2 Théoreme de d’Alembert-Gauss

d
Soit P = Z aX* un polyndme a coefficients complexes, de degré d = 1.
k=0
On cherche a montrer qu’il existe « € C tel que P(a) =0.

1. Justifier I'existence de m = inf{lP(z)l, zZE€ C}.

2. Montrer que, pour tout z € C vérifiant |z| = 1:

d-1 d-1
d k d-1
IP(2)| = laallzl = Y laxlizl* = 1217 jaqllzl - Y lax])
k=0 k=0

3. En déduire qu'’il existe R > 0 tel que, si |z| = R, alors |P(z)| = m + 1.
4. En déduire I'existence d'une suite (z,) ;e convergente telle que | P(z,,)| converge vers m.

5. On note «a la limite de (z;) ,en. Montrer que |P(a)| = m.

On suppose par 'absurde que m # 0. On note 6 € [0,27[ 'unique angle tel que P(a) = me'?.

d P(i) (@) .

6. Montrer la formule de Taylor suivante : P = Z . X-a)'.
l':(] l-
7. Montrer I'existence de kg = min{k eN* | PW () # 0}.
8. Montrer qu'’il existe une fonction € : C — C telle que :
p ko) a 1
VzeC P(@) = Pl@)+— f ) (z-a)®(1+e(2) et I>0:1z-al<d = le(2)| < >
0-

9. Montrer qu'il existe un angle ¢ € [0,27] tel que, pour tout r = 0, si z= a + re'?, alors

p(ko) (@)

~ |P(k°)(a)| rko
ko!

P~ ) ie'

P(a) + z-a=(m

10. En déduire quesiz=a + re'? etsir est suffisamment petit,

p(ko) a
| ( )|rk

|P(z2)|<m-— ko] 0,

Conclure.

1. Lensemble {IP(z) l,z€ C} estune partie non vide de R, donc elle admet une borne inférieure.

2. Soit z € C tel que | z| = 1. Par inégalité triangulaire inversée, on a

d-1 d-1
IP(2)| = lagz?+ Y arzF1=1aaz% -1 apz"l.
k=0 k=0



Par inégalité triangulaire,
a1l odol .
| Y akz"l< ) lagllzl®.
k=0 k=0
Etdonc:

d-1
da k
IP(2)| = lagllzl” = ) lagllzl".
k=0

Comme de plus |z| = 1,0na 1z1* < |2/ pour tout k € [0,d —1]. Donc,
a_ & k a_ d-1 d-1 K
aallzl” = Y lagllzl* = agllzl? = Y laglizl® = 12197 (lagllzl - Y lal)-
k=0 k=0 k=0

m+1+Y9 1 |ay

. Posons R = max(1,
lagql

m+ 1. Dong, en utilisant la question précédente :

d-1
). Silzl =1, onadonc |z > 1 et |agllzl - Y lax| =
k=0

d-1
IP(2)| = |z|d‘1(|ad||z| -y Iakl) S1x(m+1)=m+1.
k=0

. Notons A = {IP(z)I, z€ C}. Par caractérisation séquentielle de la borne inférieure, on peut

trouver une suite (u,) € AN, de limite m. Pour chaque n € N, on peut trouver w,, € C telle
que |P(wy)| = uy. Pour n suffisamment grand, on a u, < m+ 1. Donc, d’apres la question
précédente, |w,| < R pour n assez grand.

Par le théoreme de Bolzano-Weirstrass, on peut extraire de (w,) une sous-suite convergente,
qu’on note (z,). Comme la suite de terme général | P(z,)| est extraite de (u,), elle converge
aussi vers m.

. 1l s'agit d’'un résultat de continuité pour la fonction polynomiale P, vue de C dans C. Stricto
sensu, on n'a pas défini de notion de continuité pour ces fonctions.

d d

Comme P = Z aka, on a pour tout n € N: P(z,) = Z akz’,i. Comme z,, — «, on a par
k=0 k=0

opérations élémentaires sur les limites (qu'on a données dans C),

d d
Z akzﬁ - Z akak.
k=0 k=0
Donc, P(z,) — P(a), quand n tend vers +oco. Par passage au module, |P(z,)| — |P(a)|. Donc,
par unicité de la limite, m = |P(a)|.
. cf. cours sur les polynémes
. Parla formule de Taylor en a, on a

d P(k)(a)

(X — ).
= K

pP=

Sipour tout k = 1, on avait ph (a) =0, on aurait alors P = P(a), ce qui est contraire I’hypothése.

La partie {k € N* | pk (a) # 0} est donc une partie non vide de N ; elle admet donc un
minimum.



8.

10.

En utilisant de nouveau la formule de Taylor et par définition de ky, on a:

d P(k)((l)
P=P(a) + k:zko o

(X — ).

Soit z € C. On évalue en z et on réécrit un peu I'expression :

P(’“’)(a) ko d kO! p(k)(a) k—ko
P(z):P(a)+k—0!(z—a) (1+k:;0+1ﬁm(z_a) ).

On note £(z) la somme dans la parenthese. On a :

p(k)(a)

d. k! ek
le(2)| = E — —|z—a|"".
k=1 k! PR (a)

Comme toutes les puissances k — ky sont strictement positives, |e(z)| tend vers 0 quand z

1
tend vers a. On a en particulier 'existence dun é > 0telque |[z—a| <6 = |e(z)| < >

On écrit P%) (@) = |P5) (@) [e'?, olx w € [0,27]. Soit ¢ € [0,27], soit r = 0; on écritz = a+ re'?.
On aalors: ko) &
P (z—a)ho = PR eV rkogikod
ko! ko!

En prenant ¢ tel que v + ko¢p = 0 + n[27], on a donc :

ptko) (@)

ke
k. PP@I g o
“hl (z—a) 0__—k0! roe’.
p ko) Pp ko)
Et donc: P(a) + o ® (z— @ = (- L] koy 0,
kO! ko!

. 1
Soitz=a+re?. Sir< d,onale(z)| < > Par inégalité triangulaire et la question 7, on a:

Pho(q) el [ PR k
|P(z)|s(P(a)+ (z—a)k +‘—(z—a) 0 e(z)(.
ko! ko!
. [Pk ()| N PR
Le premier terme vaut m— ————r"°, Le deuxiéme terme est inférieur a r*o sir est

ko! 2kp!
suffisamment petit. Donc, pour r assez petit,

(ko)
P @)

|P(2)] = m— k!

Cette inégalité montre que, sur un demi-rayon partant de a, et suffisamment proche de a,
|P(z)| prend des valeurs strictement inférieures a m. C’est en contradiction avec la définition
de m.

Dongc, on a en fait m =0 et a est une racine de P.



