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DM 11 - Méthode de Newton et théorème de d’Alembert-Gauss

1 Méthode de Newton

1.1 Préliminaires

1. Comme f est C 2, | f ′| est continue et | f ′(x∗)| > 0. Notons m1 = | f ′(x∗)|
2

. Par localisation

asymptotique, on peut trouver h > 0 tel que ∀x ∈ [x∗−h, x∗+h], | f ′(x∗)| ≥ m1. Comme | f ′′|
est continue sur le segment [x∗ −h, x∗ +h], elle est majorée, par le théorème des bornes
atteintes. En notant M2 ce majorant, on obtient la deuxième inégalité.

2. (a) Montrons d’abord l’unicité. Si P et Q sont deux tels polynômes dans R2[X ], R = P −Q
vérifie R(a) = R(b) = R ′(a) = 0. Ceci montre que a est racine de R de multiplicité au
moins 2 et que b est racine de R. Comme degR ≤ 2 < 2+1, R est nul. Donc P =Q.

Pour l’existence, on peut chercher le polynôme sous la forme

P = f (a)+ f ′(a)(X −a)+C (X −a)2,

avec C ∈R. Par construction, on a P (a) = f (a) et P ′(a) = f ′(a). De plus,

P (b) = f (b) ⇐⇒ C = f (b)− f (a)− f ′(a)(b −a)

(b −a)2 .

Ainsi, avec cette valeur de C , P convient.

(b) Notons g : x 7→ f (x) − P (x). Alors g est de classe C 2. Comme g (a) = g (b) = 0, le
théorème de Rolle implique l’existence d’un d compris entre a et b tel que g ′(d) = 0.
Comme g ′(a) = g ′(d) = 0, le théorème de Rolle implique l’existence d’un c compris
entre a et d (donc entre a et b) tel que g ′′(c) = 0, c’est-à-dire f ′′(c) = P ′′(c).

(c) P ′′ est le polynôme constant égal à 2C . Avec la valeur trouvée plus haut pour C , on a
donc :

f ′′(c) = 2
(

f (b)− f (a)− f ′(a)(b −a)
)

(b −a)2 .

C’est équivalent à l’identité demandée.

3. On peut procéder par une récurrence rapide. Donnons un point de vue légèrement différent,
qui permet de deviner la majoration.

Considérons (vn)n∈N la suite définie par v0 = u0 et ∀n ∈ N, vn+1 = C v2
n . Une récurrence

(immédiate !) montre que pour tout n ∈N, un ≤ vn . Calculons maintenant le terme général
vn . Pour tout n ∈N, vn > 0 et, en passant au logarithme, ln vn+1 = lnC +2ln vn . Ainsi, la suite
de terme général ln vn vérifie une relation de récurrence arithmético-géométrique. La suite
de terme général wn = ln vn + lnC est géométrique de raison 2. On a donc :

∀n ∈N, ln vn =− lnC +2n(ln v0 + lnC ).
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Donc ∀n ∈N, vn =C−1(C v0)2n
. Comme v0 = u0, cela conclut.

Principe : plutôt que de considérer une relation de récurrence en inégalités, on travaille avec
la suite vérifiant le cas d’égalité, dont on peut déterminer le terme général. Cependant, une
récurrence directe est rapide.

1.2 Méthode de Newton

4. La tangente à la courbe représentative de f en xn a pour équation y = f (xn)+ (x−xn) f ′(xn).
Elle intersecte donc l’axe des abscisses quand f (xn)+ (x − xn) f ′(xn) = 0, donc quand x =
xn − f (xn)

f ′(xn)
, c’est-à-dire quand x = xn+1.

La méthode consiste donc à identifier la courbe représentative de f avec sa tangente à xn et
de chercher où s’annule cette tangente. On espère ainsi se rapprocher de plus en plus d’un
véritable zéro de f , en itérant.

5. Par l’identité de Taylor-Lagrange à l’ordre 2, appliquée à la fonction f entre x et x∗, on sait
qu’il existe ξ compris entre x et x∗ tel que :

f (x∗) = f (x)+ f ′(x)(x∗−x)+ f ′′(ξ)

2
(x∗−x)2.

Le membre de gauche est nul par définition de x∗. On divise par f ′(x), supposé non nul et

on utilise que
f (x)

f ′(x)
= x −N f (x). On obtient :

0 = x −N f (x)+ (x∗−x)+ f ′′(ξ)

2 f ′(x)
(x∗−x)2.

C’est équivalent à l’égalité demandée, en remarquant bien sûr que (x∗−x)2 = (x −x∗)2.
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6. Par construction, si |x − x∗| ≤ h, alors | f ′(x)| ≥ m1 et en particulier f ′(x) ̸= 0, donc x ∈ I0. De
plus, par la question précédente, on a l’existence d’un nombre ξ entre x et x∗ tel que :

|N f (x)−x∗| = (x −x∗)2

2| f ′(x)| | f
′′(ξ)|.

Comme ξ est compris entre x et x∗, on a en particulier |ξ− x∗| ≤ h et donc | f ′′(ξ)| ≤ M2. Et
on a déjà dit que | f ′(x)| ≥ m1. Ces deux inégalités montrent que

|N f (x)−x∗| ≤ |x −x∗|2 M2

2m1
.

7. Notons I l’intervalle [x∗−h′, x∗+h′]. Montrons que I est stable par N f . Soit x ∈ I . On a donc
|x −x∗| ≤ h′. En particulier, |x −x∗| ≤ h et, par la question précédente :

|N f (x)−x∗| ≤ |x −x∗|2 ×C ≤ h′2 ×C ≤ h′.

En effet, on a C ≤ h′−1.

Comme l’intervalle I est stable par N f , on en déduit que si x0 ∈ I , la suite définie par récurrence
pour tout n ∈N, par xn+1 = N f (xn) est bien définie, et tous les termes xn sont dans I .

De plus, par la question précédente, on a

∀n ∈N, |xn+1 −x∗| = |N f (xn)−x∗| ≤ |xn −x∗|2 ×C .

Par la question 3, on en déduit :

∀n ∈N, |xn −x∗| ≤C−1(C |x0 −x∗|)2n

.

8. Soit x0 tel que |x0−x∗| < h′. Alors l’inégalité précédente a lieu pour tout n ∈N et C |x0−x∗| <
C ×h′ ≤ 1. Dès lors, la suite

(
C |x0 −x∗|)2n

tend vers 0 et donc |xn −x∗| aussi.

Ainsi, pour une telle donnée initiale x0, la méthode de Newton converge vers x∗.

1.3 Application : la méthode de Héron

9. Dans ce cas, la récurrence est donnée par

∀n ∈N, xn+1 = xn − x2
n −a

2xn
,

qu’on peut réécrire comme xn+1 =
x2

n +a

2xn
=

xn + a
xn

2
.

Interprétation géométrique : déterminer la racine carrée de a, c’est chercher un carré dont
l’aire vaut a. On part d’un rectangle de côtés x0 et a/x0, puis on remplace l’un des côtés par la
moyenne des deux et on itère le processus. Le rectangle se transforme progressivement en carré.
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10. On cherche d’abord à estimer les différentes constantes en jeu. On constate que si x ≥ 1,
| f ′(x)| = f ′(x) = 2x ≥ 2 et f ′′(x) = 2. Donc, dans la première question, on peut prendre h =p

2−1, m1 = 2 et M2 = 2. Alors C = M2

2m1
= 1

2
et h′ = min(

p
2−1,2) =p

2−1. Ainsi, si x0 est

compris entre 1 et
p

2, la méthode de Newton va converger et on a :

∀n ∈N, |xn −p
2| ≤ 2

(
|x0 −

p
2|

2

)2n

.

Prenons par exemple x0 = 1. On peut majorer grossièrement |x0 −
p

2| par 1/2 et on a donc :

|xn −
p

2| ≤ 2

42n = 2

22n+1 = 21−2n+1
.

En particulier, si on veut |xn −
p

2| ≤ 10−100, il suffit d’avoir :

21−2n+1 ≤ 10−100.

C’est équivalent à (1−2n+1) ln2 ≤−100ln10, donc à 2n+1−1 ≥ 100
ln10

ln2
. Le membre de droite

vaut environ 332 et 29 = 524. Donc n = 8 convient.

On retiendra que la convergence est très rapide : le nombre de décimales est en gros multiplié
par 2 après chaque itération.
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2 Théorème de d’Alembert-Gauss

Soit P =
d∑

k=0
ak X k un polynôme à coefficients complexes, de degré d ≥ 1.

On cherche à montrer qu’il existe α ∈C tel que P (α) = 0.

1. Justifier l’existence de m = inf
{
|P (z)|, z ∈C

}
.

2. Montrer que, pour tout z ∈C vérifiant |z| ≥ 1 :

|P (z)| ≥ |ad ||z|d −
d−1∑
k=0

|ak ||z|k ≥ |z|d−1
(
|ad ||z|−

d−1∑
k=0

|ak |
)
.

3. En déduire qu’il existe R > 0 tel que, si |z| ≥ R, alors |P (z)| ≥ m +1.

4. En déduire l’existence d’une suite (zn)n∈N convergente telle que |P (zn)| converge vers m.

5. On note α la limite de (zn)n∈N. Montrer que |P (α)| = m.

On suppose par l’absurde que m ̸= 0. On note θ ∈ [0,2π[ l’unique angle tel que P (α) = me iθ.

6. Montrer la formule de Taylor suivante : P =
d∑

i=0

P (i )(α)

i !
(X −α)i .

7. Montrer l’existence de k0 = min
{

k ∈N∗ | P (k)(α) ̸= 0
}

.

8. Montrer qu’il existe une fonction ε :C→C telle que :

∀z ∈C,P (z) = P (α)+ P (k0)(α)

k0!
(z −α)k0

(
1+ε(z)

)
et ∃δ> 0 : |z −α| ≤ δ =⇒ |ε(z)| ≤ 1

2
.

9. Montrer qu’il existe un angle φ ∈ [0,2π[ tel que, pour tout r ≥ 0, si z =α+ r e iφ, alors

P (α)+ P (k0)(α)

k0!
(z −α)k0 = (

m − |P (k0)(α)|
k0!

r k0
)
e iθ.

10. En déduire que si z =α+ r e iφ et si r est suffisamment petit,

|P (z)| ≤ m − |P (k0)(α)|
2k0!

r k0 .

Conclure.

1. L’ensemble
{
|P (z)|, z ∈C

}
est une partie non vide deR+, donc elle admet une borne inférieure.

2. Soit z ∈C tel que |z| ≥ 1. Par inégalité triangulaire inversée, on a

|P (z)| = |ad zd +
d−1∑
k=0

ak zk | ≥ |ad zd |− |
d−1∑
k=0

ak zk |.
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Par inégalité triangulaire,

|
d−1∑
k=0

ak zk | ≤
d−1∑
k=0

|ak ||z|k .

Et donc :

|P (z)| ≥ |ad ||z|d −
d−1∑
k=0

|ak ||z|k .

Comme de plus |z| ≥ 1, on a |z|k ≤ |z|d−1 pour tout k ∈ �0,d −1�. Donc,

|ad ||z|d −
d−1∑
k=0

|ak ||z|k ≥ |ad ||z|d −
d−1∑
k=0

|ak ||z|d−1 = |z|d−1
(
|ad ||z|−

d−1∑
k=0

|ak |
)
.

3. Posons R = max(1,
m +1+∑d−1

k=0 |ak |
|ad |

). Si |z| ≥ 1, on a donc |z|d−1 ≥ 1 et |ad ||z| −
d−1∑
k=0

|ak | ≥
m +1. Donc, en utilisant la question précédente :

|P (z)| ≥ |z|d−1
(
|ad ||z|−

d−1∑
k=0

|ak |
)
≥ 1× (m +1) = m +1.

4. Notons A =
{
|P (z)|, z ∈ C

}
. Par caractérisation séquentielle de la borne inférieure, on peut

trouver une suite (un) ∈ AN, de limite m. Pour chaque n ∈ N, on peut trouver wn ∈ C telle
que |P (wn)| = un . Pour n suffisamment grand, on a un < m +1. Donc, d’après la question
précédente, |wn | < R pour n assez grand.

Par le théorème de Bolzano-Weirstrass, on peut extraire de (wn) une sous-suite convergente,
qu’on note (zn). Comme la suite de terme général |P (zn)| est extraite de (un), elle converge
aussi vers m.

5. Il s’agit d’un résultat de continuité pour la fonction polynomiale P, vue de C dans C. Stricto
sensu, on n’a pas défini de notion de continuité pour ces fonctions.

Comme P =
d∑

k=0
ak X k , on a pour tout n ∈ N : P (zn) =

d∑
k=0

ak zk
n . Comme zn → α, on a par

opérations élémentaires sur les limites (qu’on a données dans C),

d∑
k=0

ak zk
n →

d∑
k=0

akα
k .

Donc, P (zn) → P (α), quand n tend vers +∞. Par passage au module, |P (zn)|→ |P (α)|. Donc,
par unicité de la limite, m = |P (α)|.

6. cf. cours sur les polynômes

7. Par la formule de Taylor en α, on a

P =
d∑

k=0

P (k)(α)

k !
(X −α)k .

Si pour tout k ≥ 1, on avait P (k)(α) = 0, on aurait alors P = P (α), ce qui est contraire l’hypothèse.

La partie {k ∈ N∗ | P (k)(α) ̸= 0} est donc une partie non vide de N ; elle admet donc un
minimum.
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8. En utilisant de nouveau la formule de Taylor et par définition de k0, on a :

P = P (α)+
d∑

k=k0

P (k)(α)

k !
(X −α)k .

Soit z ∈C. On évalue en z et on réécrit un peu l’expression :

P (z) = P (α)+ P (k0)(α)

k0!
(z −α)k0

(
1+

d∑
k=k0+1

k0!

k !

P (k)(α)

P (k0)(α)
(z −α)k−k0

)
.

On note ε(z) la somme dans la parenthèse. On a :

|ε(z)| ≤
d∑

k=k0+1

k0!

k !

P (k)(α)

P (k0)(α)
|z −α|k−k0 .

Comme toutes les puissances k − k0 sont strictement positives, |ε(z)| tend vers 0 quand z

tend vers α. On a en particulier l’existence d’un δ> 0 tel que |z −α| ≤ δ =⇒ |ε(z)| ≤ 1

2
.

9. On écrit P (k0)(α) = |P (k0)(α)|e iψ, oùψ ∈ [0,2π[. Soitφ ∈ [0,2π[, soit r ≥ 0 ; on écrit z =α+r e iφ.
On a alors :

P (k0)(α)

k0!
(z −α)k0 = |P k0 (α)|

k0!
e iψr k0 e i k0φ.

En prenant φ tel que ψ+k0φ≡ θ+π[2π], on a donc :

P (k0)(α)

k0!
(z −α)k0 =−|P k0 (α)|

k0!
r k0 e iθ.

Et donc : P (α)+ P (k0)(α)

k0!
(z −α)k0 = (

m − |P (k0)(α)|
k0!

r k0
)
e iθ.

10. Soit z =α+ r e iφ. Si r ≤ δ, on a |ε(z)| ≤ 1

2
. Par inégalité triangulaire et la question 7, on a :

|P (z)| ≤
∣∣∣P (α)+ P k0 (α)

k0!
(z −α)k0

∣∣∣+ ∣∣∣P k0 (α)

k0!
(z −α)k0

∣∣∣∣∣∣ε(z)
∣∣∣.

Le premier terme vaut m− |P k0 (α)|
k0!

r k0 . Le deuxième terme est inférieur à
|P k0 (α)|

2k0!
r k0 si r est

suffisamment petit. Donc, pour r assez petit,

|P (z)| ≤ m − |P (k0)(α)|
2k0!

r k0 .

Cette inégalité montre que, sur un demi-rayon partant de α, et suffisamment proche de α,
|P (z)| prend des valeurs strictement inférieures à m. C’est en contradiction avec la définition
de m.

Donc, on a en fait m = 0 et α est une racine de P .
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