
MPSI 3 Devoir surveillé 2025-2026

DS 5 de mathématiques

Durée : 4h.

• Les calculatrices et autres technologies sont interdites.

• Une attention particulière sera portée à la qualité de la rédaction et à la rigueur du
raisonnement. La copie doit être lisible, les pages numérotées, les calculs suffisamment
détaillés, les résultats mis en valeur...

• Les deux problèmes sont indépendants et peuvent être traités dans un ordre quelconque.

• Si vous repérez une possible erreur d’énoncé, vous êtes invité(e) à venir le signaler.

1 Théorème de Glaeser1

On s’intéresse à la régularité de
√

f , en fonction de conditions de régularité sur f : R → R+.
Les deux parties du problème sont essentiellement indépendantes.

1.1 Condition pour que
√
f soit de classe C1

Soit f : R → R+ une fonction de classe C2. On cherche à établir une condition nécessaire et
suffisante sur f pour que

√
f soit de classe C1.

1. Soit x0 ∈ R tel que f(x0) > 0. Montrer que
√
f est dérivable en x0 et exprimer(√

f
)′

(x0) en fonction de f(x0) et f ′(x0).

2. Soit x0 ∈ R tel que f(x0) = 0.

(a) Montrer que f ′(x0) = 0.

(b) Montrer que
f(x0 + h)

h2
→ f ′′(x0)

2
, quand h → 0.

(c) En déduire que
√

f est dérivable en x0 si, et seulement si, f ′′(x0) = 0.

Préciser la valeur de
(√

f
)′

(x0) dans ce cas.

Soit x0 ∈ R tel que f(x0) = f ′(x0) = f ′′(x0) = 0.
Soit α > 0. On note I(α) = [x0 − 2α, x0 + 2α] et M(α) = sup

{
|f ′′(x)|, x ∈ I(α)

}
.

1Georges Glaeser (1918–2002), mathématicien français
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3. Soit x ∈ [x0 − α, x0 + α].

(a) Soit h ∈ [−α, α]. En utilisant une formule de Taylor, montrer que

f(x) + hf ′(x) + h2
M(α)

2
≥ 0.

On suppose M(α) > 0.

(b) Montrer que le trinôme h 7→ f(x) + hf ′(x) + h2
M(α)

2
atteint son minimum sur R

en un h tel que |h| ≤ α.
(c) En déduire que (f ′)2(x) ≤ 2f(x)M(α).
(d) En déduire que (

√
f)′ est continue en x0.

Montrer que la conclusion persiste si M(α) = 0.

4. Conclure, en donnant une CNS sur f pour que
√
f soit de classe C1.

1.2 Un contre-exemple pour une meilleure régularité

On cherche à construire un exemple de fonction f : R → R+ de classe C∞ dont toutes les
dérivées en 0 sont nulles mais telle que

√
f n’est pas de classe C2.

On admet l’existence d’une fonction ϕ : R → R+ vérifiant les propriétés suivantes :

• ϕ est de classe C∞ et ϕ(n)(0) = 0, pour tout n ∈ N ;

• ϕ est strictement positive sur R∗ ;

• Pour tout n ∈ N∗, ϕ est constante au voisinage de
1

n
:

∀n ∈ N∗,∃δ ∈ ]0, 1/n[ : ∀x ∈ [1/n− δ, 1/n+ δ] , ϕ(x) = ϕ (1/n) .

On définit s et f sur R∗ par s(x) = sin2
(π
x

)
et f(x) = ϕ(x)

(
s(x) + ϕ(x)

)
.

5. Montrer que, pour tout n ∈ N∗, il existe deux fonctions polynomiales pn et qn telles que

∀x ∈ R∗, s(n)(x) =
pn(x) cos

(
2π
x

)
+ qn(x) sin

(
2π
x

)
x2n

.

6. Pour tout n ∈ N, exprimer f (n) en fonction des dérivées ϕ(k) et s(k), pour k ∈ J0, nK.

7. Montrer que, pour tous k, n ∈ N,
ϕ(k)(x)

xn
→ 0, quand x → 0.

8. En déduire que f peut être prolongée en une fonction de classe C∞ sur R.

On suppose par l’absurde que g =
√
f est de classe C2. Soit n ∈ N∗.

9. Exprimer f(1/n), f ′(1/n) et f ′′(1/n) en fonction de ϕ(1/n) et n.

10. En déduire la valeur de g′′(1/n).

11. Conclure.
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2 Fonction Γ et théorème de Bohr2-Mollerup3

2.1 Définition de Γ

Pour tout n ∈ N∗, on définit la fonction Πn sur R∗
+ par :

∀x ∈ R∗
+,Πn(x) =

nxn!

x(x+ 1) . . . (x+ n)
.

1. Croissance de
(
Πn(x)

)
n∈N∗.

(a) Soit a ∈]0, 1[. On définit fa sur [−1,+∞[ par fa(x) = ln(1 + ax).
Montrer que fa est concave. En déduire que

∀x ∈ R∗
+, ln(1 + ax) ≤ −x ln(1− a).

(b) Montrer que pour tout n ∈ N∗ et tout x ∈ R∗
+,

x ln

(
1 +

1

n

)
≥ ln

(
1 +

x

n+ 1

)
.

(c) En déduire que, pour tout x ∈ R∗
+, la suite

(
Πn(x)

)
n∈N∗ est croissante.

2. Majoration de
(
Πn(x)

)
n∈N∗. On fixe x ∈ R∗

+.

(a) Montrer qu’il existe A > 0 tel que : ∀t ∈ [0, x], t−At2 ≤ ln(1 + t) ≤ t.

(b) Pour tout n ∈ N∗, exprimer ln
(
xΠn(x)

)
en fonction notamment de

n∑
k=1

ln
(
1 +

x

k

)
.

On admet que les deux suites

(
lnn−

n∑
k=1

1

k

)
n∈N∗

et

(
n∑

k=1

1

k2

)
n∈N∗

sont convergentes.

(c) Déduire des questions précédentes que la suite
(
Πn(x)

)
n∈N∗ est majorée.

Par théorème de la limite monotone, on peut ainsi définir une fonction Γ sur R∗
+ par

Γ(x) = lim
n→+∞

Πn(x).

Pour tout x ∈ R∗
+, on a Γ(x) > 0 car la suite

(
Πn(x)

)
est croissante et à valeurs dans R∗

+.

2.2 Théorème de Bohr-Mollerup

On cherche à montrer le théorème suivant : Γ est l’unique fonction f : R∗
+ → R∗

+ telle que

2Harald Bohr (1887-1951), mathématicien et footballeur danois, frère du prix Nobel de physique Niels Bohr
3Johannes Mollerup (1872-1937), mathématicien danois
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• f(1) = 1 ;

• ∀x ∈ R∗
+, f(x+ 1) = xf(x) ;

• ln ◦f est convexe.

3. Montrer que Γ(1) = 1.

4. Pour tous n ∈ N∗ et x ∈ R∗
+, établir une relation entre Πn(x+ 1) et Πn(x).

En déduire que, pour tout x ∈ R∗
+, on a Γ(x+ 1) = xΓ(x).

5. En déduire la valeur de Γ(n), pour n ∈ N∗.

6. Montrer que, pour tout n ∈ N∗, la fonction ln ◦Πn est convexe.

7. En déduire que ln ◦Γ est convexe.

On considère maintenant une fonction f vérifiant les propriétés énoncées plus haut.

8. Soient x ∈]0, 1[, n ≥ 2. En comparant les taux d’accroissement de ln ◦f entre n et
d’autres points bien choisis, montrer que :

(n− 1)x ≤ f(n+ x)

f(n)
≤ nx.

9. En déduire que : Πn−1(x) ≤ f(x) ≤ n+ x

n
Πn(x).

10. En déduire que f = Γ.

2.3 Formule intégrale pour Γ

Pour tout n ∈ N∗, on définit la fonction Γn sur R∗
+ par Γn(x) =

∫ n

1/n
tx−1e−tdt.

11. Montrer que
(
Γn(1)

)
n∈N∗ est convergente et déterminer sa limite.

12. Soit x ∈ R∗
+. Montrer qu’il existe une suite

(
εn(x)

)
n∈N∗ , de limite nulle, telle que

∀n ∈ N∗,Γn(x+ 1) = xΓn(x) + εn(x).

On admet la formule de Hölder démontrée en TD. Si p, q > 1 sont tels que
1

p
+
1

q
= 1, si n ∈ N∗

et si a1, . . . , an ; b1, . . . , bn sont des réels, alors
n∑

k=1

akbk ≤
( n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

.

13. Montrer que si f, g sont des fonctions continues sur un segment [a, b] et si p, q > 1

vérifient
1

p
+

1

q
= 1, alors

∫ b

a
fg ≤

(∫ b

a
fp

)1/p(∫ b

a
gq
)1/q

.

14. En déduire que, pour tout n ∈ N∗, la fonction ln ◦Γn est convexe.

15. Montrer que, pour tout x ∈ R∗
+, la suite

(
Γn(x)

)
n∈N∗ est convergente.

16. Montrer que, pour tout x ∈ R∗
+, Γn(x) → Γ(x), quand n → +∞.
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