MPSI 3 Devoir surveillé 2025-2026

DS 5 de mathématiques

Durée : 4h.
e Les calculatrices et autres technologies sont interdites.

e Une attention particuliére sera portée a la qualité de la rédaction et a la rigueur du
raisonnement. La copie doit étre lisible, les pages numérotées, les calculs suffisamment
détaillés, les résultats mis en valeur...

e Les deux problémes sont indépendants et peuvent étre traités dans un ordre quelconque.

e Si vous repérez une possible erreur d’énoncé, vous étes invité(e) a venir le signaler.

1 Théoréme de Glaeser!

On s’intéresse a la régularité de \/f, en fonction de conditions de régularité sur f : R — R,..
Les deux parties du probléme sont essentiellement indépendantes.

1.1 Condition pour que \/f soit de classe C!

Soit f : R — R, une fonction de classe C2. On cherche a établir une condition nécessaire et
suffisante sur f pour que \/f soit de classe C.

1. Soit zy € R tel que f(zg) > 0. Montrer que \/? est dérivable en xgp et exprimer
/!
(ﬂ) (x0) en fonction de f(xg) et f'(z0).

2. Soit zg € R tel que f(xp) = 0.

(a) Montrer que f'(zg) = 0.
fl@o+h)  f(x0)
o
(¢) En déduire que \/f est dérivable en xq si, et seulement si, f”(xq) = 0.
/
Préciser la valeur de (ﬁ) (zo) dans ce cas.

(b) Montrer que , quand h — 0.

Soit g € R tel que f(zg) = f'(z0) = f"(x0) = 0.
Soit a > 0. On note I(a) = [zg — 2, T + 20] et M(a) = sup {|f"(2)|,z € I(a)}.
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3. Soit = € [xg — a, g + .
(a) Soit h € [, a]. En utilisant une formule de Taylor, montrer que

F@) +hf' (@) + hZMé(” > 0.

On suppose M (a) > 0.

M(a)

(b) Montrer que le trinome h +— f(x) + hf'(z) + hQT atteint son minimum sur R
en un h tel que |h| < a.
(¢) En déduire que (f')2(z) < 2f(z)M(a).

(d) En déduire que (v/f) est continue en .
Montrer que la conclusion persiste si M (a) = 0.

4. Conclure, en donnant une CNS sur f pour que \/f soit de classe C.

1.2 Un contre-exemple pour une meilleure régularité

On cherche a construire un exemple de fonction f : R — R4 de classe C* dont toutes les
dérivées en 0 sont nulles mais telle que \/f n’est pas de classe C2.
On admet D'existence d’une fonction ¢ : R — R, vérifiant les propriétés suivantes :

e ¢ est de classe C* et ¢(™ (0) =0, pour tout n € N ;

e ¢ est strictement positive sur R* ;
e Pour tout n € N*, ¢ est constante au voisinage de % :
Vn e N*,30 €10,1/n[:Vz € [1/n—06,1/n+68],p(x) = ¢ (1/n).
On définit s et f sur R* par s(z) = sin® (g) et f(z) = d(z)(s(z) + ¢(2)).

5. Montrer que, pour tout n € N*, il existe deux fonctions polynomiales p,, et ¢, telles que

pn(w) cos (3F) + gn(w) sin (%)
r2n ’

Vo € R*, s (z) =

6. Pour tout n € N, exprimer f (") en fonction des dérivées <Z>(k) et s(k), pour k € [0, n].

¢ ()

xn

7. Montrer que, pour tous k,n € N, — 0, quand x — 0.

8. En déduire que f peut étre prolongée en une fonction de classe C* sur R.
On suppose par I’absurde que g = \/? est de classe C2. Soit n € N*.
9. Exprimer f(1/n), f'(1/n) et f”(1/n) en fonction de ¢(1/n) et n.
10. En déduire la valeur de ¢”(1/n).

11. Conclure.



2 Fonction I' et théoréme de Bohr?>-Mollerup®

2.1 Définition de I

Pour tout n € N*, on définit la fonction II,, sur R% par :

n®n!

Vo € R I, (z) = r(z+1)...(x+n)

1. Croissance de (Hn(x))neN*.

(a) Soit a €]0,1[. On définit f, sur [—1, +oo] par fo(z) = In(1 + az).
Montrer que f, est concave. En déduire que

Vo € R, In(1+ax) < —zln(l —a).

(b) Montrer que pour tout n € N* et tout z € RY,,

1
xln(l—l—)Zln(l—l— x )
n n+1

(c) En déduire que, pour tout x € R, la suite (H”(x))neN* est croissante.

2. Majoration de (Hn(:c))neN*. On fixe x € R’
(a) Montrer qu'il existe A > 0 tel que : Vt € [0,z],t — At? <In(1 +1t) < t.

n
(b) Pour tout n € N*, exprimer In (an(x)) en fonction notamment de Z In (1 + %)
k=1

n n
1 1
On admet que les deux suites (lnn — E k‘) et ( g k:2> sont convergentes.
k=1 neN* k=1 neN*

(¢) Déduire des questions précédentes que la suite (I, (z)) est majorée.

neN*

Par théoréme de la limite monotone, on peut ainsi définir une fonction I' sur R’ par

I(z) = lim II,(z).

n—-+o0o

Pour tout € R%, on a I'(z) > 0 car la suite (IL,(x)) est croissante et & valeurs dans R’

2.2 Théoréme de Bohr-Mollerup

On cherche & montrer le théoréme suivant : I' est 'unique fonction f : R}, — R telle que
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e f(1)=1; e Inof est convexe.
eV eRY, f(x+1)=af(x);
3. Montrer que I'(1) = 1.

4. Pour tous n € N* et x € R, établir une relation entre II,(x + 1) et IL,(z).
En déduire que, pour tout x € R%, on a I'(x + 1) = 2T'(z).

5. En déduire la valeur de I'(n), pour n € N*.
6. Montrer que, pour tout n € N*, la fonction In o II,, est convexe.
7. En déduire que InoI est convexe.
On considére maintenant une fonction f vérifiant les propriétés énoncées plus haut.

8. Soient = €]0,1[, n > 2. En comparant les taux d’accroissement de Inof entre n et
d’autres points bien choisis, montrer que :

(n—1)" < f(;‘(‘;f”') <.
9. En déduire que : II,_1(z) < f(x) < n :; $Hn(x)

10. En déduire que f =T.

2.3 Formule intégrale pour I

n
Pour tout n € N*, on définit la fonction I',, sur RY par I'y(z) = / t* e tdt,
1/n

11. Montrer que (I'y(1)) est convergente et déterminer sa limite.

neN*

12. Soit € RY.. Montrer qu'il existe une suite (En(l‘)) de limite nulle, telle que

neN*’
Vn e N Ty (z+ 1) = 2Ty (z) + en(z).

1 1
On admet la formule de Holder démontrée en TD. Sip, ¢ > 1 sont tels que —+— =1, sin € N*
p q

" " 1/p 1 & 1/q
et siai,...,an ; b1,...,b, sont des réels, alors Zakbk < (Z |ak|p) (Z |b;€\q> )
k=1 k=1 k=1

13. Montrer que si f, g sont des fonctions continues sur un segment [a,b] et si p,q > 1

11 b b 1/p b 1/q
vérifient — + — = 1, alors / fg < </ fp) (/ gq> .
b q a a a

14. En déduire que, pour tout n € N*, la fonction Ino T, est convexe.

15. Montrer que, pour tout x € R, la suite (Fn(x)) est convergente.

neN*

16. Montrer que, pour tout € R, T';,(z) — I'(z), quand n — +oo.



