Polynomes

Jeremy Daniel

Les géométres se sont beaucoup
occupés de la résolution générale des
équations algébriques, et plusieurs
d’entre eux ont cherché a en prouver
I'impossibilité ; mais si je ne me
trompe pas, on n’y a pas réussi
jusqu’a présent. J’ose donc espérer que
les géométres recevront avec
bienveillance ce mémoire qui a pour
but de remplir cette lacune dans la
théorie des équations algébriques.

Niels Henrik Abel !

On désigne par K un corps quelconque.

1 Présentation de K[X]

1.1 L’anneau K[X]

DEFINITION 1.1 (Suites & support fini)
Une suite (u,) € KN est a support fini s’il existe N € N tel que Vn > N, u, = 0.

NOTATION 1.2
On note KN Pensemble des suites & support fini.

DEFINITION 1.3 (Opérations sur KN)

Soient (u,)nens (Un)nen € KN Soit A € K. On définit
— (Un)neN + (Un)nen = (Un + Vp)nen € KN ;
— Mtn)nen = (AUp)nen';

1. Phrase introductive du Mémoire sur les équations algébriques, ot l’on démontre l'timpossibilité de la
résolution de l’équation générale du cinquiéme degré.



— (ui)ien X (v5)jen = (Wg)gen, Ol pour tout k € N :

REMARQUE 1.4
La somme et la multiplication externe par un élément de K sont déja définies sur KN. En
revanche, le produit de convolution n’est pas la restriction du produit usuel défini sur KN.

DEFINITION 1.5 (Indéterminée X)
On note X € KN 1a suite (8,1 )nen-

LEMME 1.6 (Calcul de X*)
Pour tout k € N, on définit X* comme le k-éme itéré de X pour la loi x. Alors,

Vk € N, X" = (Ok.n ) neN-

REMARQUE 1.7
Si P = (pi)ren € KN, on a donc P = Zkak, la somme étant en réalité finie puisque py,

keN
est nul & partir d’'un certain rang. On utilise systématiquement ce mode de représentation

des éléments de KN

DEFINITION 1.8 (Ensemble des polynémes K[X])
On note K[X], ce qui a été dénoté jusque la par KNV, Les éléments de K[X] sont les
polynomes a coefficients dans K.

REMARQUE 1.9
On pourra parfois utiliser une autre lettre 7', U, Y, Z... au lieu de X. On évitera cependant
I’emploi d’une lettre minuscule.

REMARQUE 1.10
Soient P = Zkak et Q = quXk. Soit A € K.
k k

Les opérations dans K[X| sont données par :

— AP = X - PQ=Y (D pa)X".

k k i+j=k

THEOREME 1.11 (K[X] est un anneau commutatif)
Muni des lois + et x, K[X] est un anneau commutatif.



DEFINITION 1.12 (Degré)
Soit P = Zkak € K[X]. On définit le degré de P par

—00 siP=0

deg P = { max{k € N | px # 0} sinon.

REMARQUE 1.13

d
Si d est le degré de P # 0, on peut donc écrire P = Zka ¥ On prendra garde au fait
k=0

d
que réciproquement une écriture P = Zka * implique seulement que deg P < d (le
k=0
coefficient py pouvant étre nul).

NotaTioN 1.14 (K, [X])
Pour tout n € N, on note K,[X] ensemble des polynémes de degré < n.

DEFINITION 1.15 (Coefficient dominant, coefficient constant)
d

Soit P = Z peX* un polynéme non nul de degré d.

=0
On appelle py le coefficient dominant de P, pg le coefficient constant de P.

DEFINITION 1.16 (Polynéme unitaire, polynéme constant)
Un polynome P est unitaire s’il est non nul et si son coefficient dominant est égal a 1.
Un polynoéme est constant s’il est nul ou de degré 0.

REMARQUE 1.17
On identifie les polynomes constants aux éléments de K.

PROPOSITION 1.18 (Degré de la somme, du produit)

Soient P,Q € K[X].
— deg(P + Q) < max(deg P, deg Q), avec égalité si deg P # deg Q.
— deg(PQ) = deg P + deg Q.

COROLLAIRE 1.19 (Intégrité de K[X])
L’anneau K[X] est intégre.

COROLLAIRE 1.20 (Inversibles de K[X])
Les inversibles de K[X] sont les polynomes constants non nuls.

DEFINITION 1.21 (Polynémes associés)
Deux polyndémes P et () sont associés s’ils sont tous les deux nuls, ou g’il existe A € K tels
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que P = \Q.

REMARQUE 1.22
On définit ainsi une relation d’équivalence sur K[X]. Un ensemble de représentants des
classes est formé par le polynéme nul et 'ensemble des polyndémes unitaires.

1.2 Composition et évaluation

DEFINITION 1.23 (Polynéme composé)
Soient P et () deux polynémes. On note P = Z X", On définit le polynéme composé

k
P o @) — noté parfois P(Q)) — par Po @ = Zkak.
k

ATTENTION !
Comme pour les fonctions, P o @) # ) o P en général.

REMARQUE 1.24
En particulier, en prenant () = X, on a Po X = P. On notera indifféremment P ou P(X)
par la suite.

PROPOSITION 1.25 (Degré du polynéme composé)
Soient P,Q € K[X], avec Q non nul. On a :

deg(P o @) =deg P x deg Q.

DEFINITION 1.26 (Evaluation)
Soit P = Zkak et a € K. L’¢évaluation de P en a — notée P(a) —est P(a) = Zpkak.
k k

DEFINITION 1.27 (Polynémes et applications polynomiales)
Soit P € K[X]. On note P € KX la fonction définie par P(a) = P(a), pour tout a € K.
On définit ainsi une application ® : K[X] — K, par ®(P) = P.

REMARQUE 1.28
L’application ® est compatible avec la somme, le produit, la multiplication externe par un
¢lément de K et avec la composition.



1.3 Deérivation

DEFINITION 1.29 (Polynéme dérivé)

d
Soit P = Z peX". Son polynéme dérivé, noté P’ est
k=0
d d—1
Pr=> kpp X' =) (k4 Dprga X*.
k=1 k=0

On définit récursivement P%®) par PO = P et P®) = (P(k_l))/, pour k > 1.

REMARQUE 1.30
Pour K = R, cette définition est compatible avec la notion classique de dérivée des appli-
cations polynomiales.

PROPOSITION 1.31 (Degré du polynéome dérivé)
Si car(K) = 0 et si P nest pas constant, deg P = deg P — 1.

PROPOSITION 1.32 (Formules sur la dérivation)
Soient P,Q € K[X], soient A\, u € K, soit n € N.
— AP+ Q) = AP+ Q) ;
~ (PQ) = P'Q+ PQ ;

— Formule de Leibniz : (PQ () — (n> P(k)Q(" ®) ’
Q) kz_—() &
— (Po@Q)=Q x P oqQ.

THEOREME 1.33 (Formule de Taylor formelle)
On suppose car(K) = 0. Soit P € K[X] de degré d, soit a € K.

. pH) (g
Pzzpk!( )(X—a)k.
k=0

REMARQUE 1.34
Ainsi, un polynéme P est entiérement déterminé par la suite des valeurs P(k)(a), ou k € N.

2  Arithmétique de K[X]

2.1 Division euclidienne

DEFINITION 2.1 (Relation de divisibilité)
Soient A, B € K[X]. On dit que B divise A — ou que B est un diviseur de A ou que A est
un multiple de B — ¢'il existe @ € K[X] tel que A = B x Q.
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PROPOSITION 2.2
Soient A, B € K[X] tels que A divise B et B divise A. Alors, A et B sont associés.

REMARQUE 2.3
La relation de divisibilité est ainsi une relation d’ordre (non totale) sur l’ensemble des
classes d’équivalence pour la relation étre associé.

THEOREME 2.4 (Division euclidienne dans K[X])
Soient A, B € K[X], avec B # 0.
Il existe un unique couple (Q, R) € K[X]? tel que : A = BQ + R et deg R < deg B.

DEFINITION 2.5 (Quotient et reste)
Dans le théoréeme précédent, @) est le quotient dans la division euclidienne de A par B, R
est le reste.

REMARQUE 2.6
B divise A ssi le reste dans la division euclidienne de A par B est nul.

DEFINITION 2.7 (Idéal dans un anneau commutatif)

Soit A un anneau commutatif. Un idéal I de A est une partie I de A telle que
— I est un sous-groupe de (A, +);
—Ya€e A xel, xacl

EXERCICE 2.8
Montrer que si un idéal I contient un élément inversible de A, alors [ = A.
En déduire quels sont les idéaux d’'un corps K.

DEFINITION 2.9 (Idéal principal, anneau principal)

Un idéal I d’'un anneau commutatif A est principal s'il est de la forme A = {za,a € A},
pour un élément x € A.

Un anneau est principal s’il est commutatif, intégre et si tous ses idéaux sont principaux.

EXEMPLES 2.10
— Les idéaux de Z étant en particulier des sous-groupes de Z, ils sont de la forme nZ,
pour un n € Z. Donc, Z est un anneau principal.
— L’anneau Z[X] (sous-anneau de Q[X| des polyndmes a coefficients entiers) n’est pas
principal : l'idéal I = {2k + X P, (k, P) € Z x Z[X]} n’est pas principal.

COROLLAIRE 2.11 (K[X] est un anneau principal)
K[X] est un anneau principal : les idéaux de K[X] sont de la forme AK[X], ou A € K[X].



REMARQUE 2.12
Si A et B sont deux générateurs du méme idéal, alors ils sont associés. En général, on
choisira le générateur unitaire (pour un idéal non nul) si on a besoin d’en fixer un.

REMARQUE 2.13
Cet énoncé explique en grande partie pourquoi 'arithmétique de K[X] est trés proche de
celle de Z.

2.2 PGCD, PPCM

DEFINITION 2.14 (PGCD de deux polynémes)
Soient A, B € K[X]. On appelle PGCD de A et B tout générateur de 1'idéal

AK[X] + BK[X] = {AP + BQ, (P,Q) € K[X]*}.

NOTATION 2.15
Les PGCD de A et B sont donc associés. L’unique unitaire (si (A, B) # (0,0)) est noté
AN B. Si (A, B) = (0,0), on définit 0 A0 = 0.

REMARQUE 2.16
On a donc (A A B)K[X] = AK[X]| 4+ BK[X]. Conséquences :
— A A B est un diviseur commun de A et B.
— 11 existe un couple (U, V) € K[X]? tel que AU + BV = A A B. On parle de relation
de Bézout.
— Les diviseurs communs & A et B sont exactement les diviseurs communs de A A B.
— A A B est 'unique polynéme unitaire de degré maximal divisant A et B.

REMARQUE 2.17
D’un point de vue algorithmique, le calcul de AA B ou d’une relation de Bézout entre A et
B se fait comme pour les entiers, respectivement par I’algorithme d’Euclide et I’algorithme
d’Euclide étendu.

EXERCICE 2.18
Déterminer un PGCD et une relation de Bézout pour

A=X>+3X2+2X et B=X?+5X +6.

PROPOSITION 2.19 (A A B ne dépend pas du corps)

Soient L un corps, tel que K est un sous-corps de L. Soient A, B € K[X]. En considérant
A et B dans L[X], on calcule (AN B) dans L[X]. Alors, AN B € K[X].

REMARQUE 2.20
Le cas le plus important en pratique est celui ot K= R et L = C. Le PGCD unitaire de
deux polyndmes a coefficients réels, calculé dans C[X], est en fait & coefficients réels.



DEFINITION 2.21 (PPCM de deux polyndmes)
Soient A, B € K[X]. On appelle PPCM de A et B tout générateur de 'idéal

AK[X] N BK[X].

NOTATION 2.22
Deux PPCM de A et B sont associés. On note A V B I'unique PPCM unitaire — si A et B
sont non nuls. Si A ou B est nul, AV B =0.

REMARQUE 2.23

On a donc (A V B)K[X] = AK[X]| N BK[X]. Conséquences :
— AV B est un multiple commun de A et B.
— Les multiples communs de A et B sont exactement les multiples de AV B.
— AV B est I'unique polyndéme unitaire de degré minimal multiple de A et B.

DEFINITION 2.24 (PGCD et PPCM d’un nombre fini de polyndmes)

Soient Ay, ..., A, € K[X]. On appelle
— PGCD de Ay, ..., A, tout générateur de I'idéal A;K[X]+ ---+ A, K[X].
— PPCM de Ay,..., A, tout générateur de I'idéal A;K[X]N---N A,K[X].

NOTATION 2.25

Si (Ay,...,A,) #(0,...,0), on note Ay A--- A A, 'unique PGCD unitaire de Ay, ..., A,
(0 si tous les A; sont nuls). Si aucun des A; n’est nul, on note A; V- --V A, 'unique PPCM
unitaire de A;, ..., A, (0 si 'un des A; est nul).

REMARQUE 2.26

Ainsi,
— Les diviseurs communs de Ay, ..., A, sont les diviseurs de A; A --- A A,,.
— Les multiples communs de Aq,..., A, sont les multiples de A; V---V A,.
— DNexiste (Uy,...,U,) € K[X] tels que AUy +-+-+ AU, = A N+~ NA,.

— A et V sont associatives et commutatives.

2.3 Polynoémes irréductibles et polynémes premiers entre eux

DEFINITION 2.27 (Polynémes premiers entre eux)
Soient A, B € K[.X]. Ils sont premiers entre eux si AA B = 1.

THEOREME 2.28 (Identité de Bézout)
Deuz polynomes A, B € K[X] sont premiers entre euz ssi 3(U, V) € K[X]* : AU + BV = 1.

PROPOSITION 2.29

Soient A, B € K[X| non tous les deux nuls. Alors
eu.

A tB
’A/\BeA/\B

sont premiers entre



PROPOSITION 2.30 (Polyndéme premier avec un produit)
Soient A, By, ..., B, € K[X].

Alors, A est premier avec By ... B, ssi A est premier avec chaque B;.

PROPOSITION 2.31 (Produit de premiers entre eux)
Soient A, B,C € K[X].
St A et B divisent C et que A et B sont premiers entre eux, alors AB divise C.

PROPOSITION 2.32 (Lemme de Gauss)
Soient A, B,C € K[X].
On suppose que A | BC' et que A est premier avec B, alors A divise C.

DEFINITION 2.33 (Premiers entre eux dans leur ensemble)
Des polynémes Py, ..., P, € K[X] sont premiers entre eux dans leur ensemble si

PN NP, =1.

REMARQUE 2.34
Comme pour les entiers, on notera la distinction entre premiers entre eux dans leur en-

semble et deuxr & deux premiers entre eur. Considérer par exemple P, = X(X — 1),
Py =X(X—-2)et Ps= (X —1)(X —2) dans R[X].

DEFINITION 2.35 (Polynoéme irréductible)
Un polynoéme A € K[X] est irréductible s’il n’est pas constant et si

Y(B,C) € KIX]? (A= BC) = (degB=0ou degC = 0).

REMARQUE 2.36
Si deux polyndmes sont associés, I'un est irréductible ssi I'autre 1'est.

PROPOSITION 2.37 (X — « est irréductible)
Pour tout a € K, X — «a est irréductible dans K[X].

PROPOSITION 2.38
Soient A, B € K[X]. Si A est irréductible et ne divise pas B, alors A est premier avec B.

COROLLAIRE 2.39 (Lemme d’Euclide)
Soient A, B,C € K[X] tels que A est irréductible et A divise BC'.
Alors A divise B ou A divise C.

THEOREME 2.40 (Factorisation en produit d’irréductibles)
Soit P € K[X]| —{0}. I existe A € K*, un nombre fini de polynomes irréductibles unitaires



deuz a deux distincts Py, ..., Py, des entiers nq,...,ny > 1 tels que

k
P=x]] P
=1

Cette écriture est unique, a permutation prés des facteurs.

REMARQUE 2.41
Les polynomes constants non nuls sont obtenus en considérant le produit vide (k = 0).

PROPOSITION 2.42 (Divisibilité avec la factorisation)
: k

Soient P = )‘szn et Q = ,uH P™ deuz polynomes écrits en produit d’irréductibles —
i=1 i=1
on convient que n; ou m; peut étre nul. Alors,

P divise QQ < Vi € [1,k],n; < m,.

COROLLAIRE 2.43 (PGCD et PPCM)

k k
Avec les notations précédentes, P A\ Q) = H Pimm(n“mi) et PVQ= H Pimax(n“m").
i=1 i=1

COROLLAIRE 2.44 (PGCD x PPCM)
Si P.Q e KIX], (PANQ)(PVQ)=PQ.

3 Racines d’un polynoéme

3.1 Généralités

DEFINITION 3.1 (Racine d’un polynome)
Soient P € K[X],a € K. On dit que « est racine — ou zéro — de P si P(a) = 0.

PROPOSITION 3.2 (Factorisation par X — «)
Soient P € K[X],a € K. Alors, a est racine de P ssi X — a divise P.

PROPOSITION 3.3 (Factorisations successives)
Soit P € K[X], soient ay,...,a, € K deuzr & deuz distincts. On suppose que pour tout

i € [1,n], a; est racine de P. Alors, H(X — «;) divise P.

=1

COROLLAIRE 3.4 (Borne sur le nombre de racines)
Un polynome P € K[X]| de degré d a au plus d racines distinctes.
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REMARQUE 3.5
En particulier, si un polynéme a une infinité de racines, alors il est nul.

COROLLAIRE 3.6 (Morphisme d’évaluation)
L application ® : K[X] — KX, P+ P est injective ssi K est infini.

DEFINITION 3.7 (Multiplicité d'une racine)
Soit P € K[X] — {0}, soit @ € K. La multiplicité — ou ordre de multiplicité — de o dans P
est le plus grand entier k tel que (X — a)F divise P.

REMARQUE 3.8
Ainsi, « est racine de P ssi la multiplicité de o dans P est au moins 1.
Si, la multiplicité est au moins 2, on parle de racine multiple.

ProprosITION 3.9
Awvec les notations précédentes, a est racine de P de multiplicité p ssi

AQ e KIX]: A=Q x (X —a)? et Q(a) # 0.
PROPOSITION 3.10 (Factorisations successives, avec multiplicité)
Soient P € K[ X], ay, ..., € K, deuz a deuz distincts de multiplité ny, ..., n, dans P.
Alors, H(X — ;)" divise P.
i=1

DEFINITION 3.11 (Polynéme scindé, scindé a racines simples)

s

Un polynome P € K[X] non nul est scindé s'il s’écrit P = /\H(X — a;)™, ot les o sont
i=1

deux & deux distincts et n; > 1.

Si de plus, pour tout 7, n; = 1, on dit qu’il est scindé a racines simples.

REMARQUE 3.12

Un polynoéme est scindé a racines simples s’il a autant de racines que son degré. Il est
scindé si la somme des multiplicité de ses racines est égale a son degré; on dit encore que
son degré est égal a son nombre de racines, en comptant les multiplicités.

3.2 Multiplicité et dérivées successives
On suppose car K = 0.
PRrRoPOSITION 3.13

Soit P € K[X] — {0}, soit a € K.
Alors, a est racine de P d’ordre au moins k ssi P(a) = P'(a) = --- = P%Y(a) = 0.
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COROLLAIRE 3.14 (Caractérisation de la multiplicité par les dérivées successives)
Awvec les mémes notations, o est racine de P d’ordre exactement k ssi

P(a) = P'(a) = --- = P*V(a) =0 et PP (a)#0.

EXERCICE 3.15

Soit P € R[X].
— Montrer que si P est scindé a racines simples, alors P’ aussi.
— Montrer que si P est scindé, alors P aussi.

3.3 Relations coeflicients-racines

DEFINITION 3.16 (Expressions symétriques élémentaires)
Soient x1,...,z, € K. On note, pour tout k € [1,n] :

O = E Tjy Ly« + - Ty
1< <ig << <n

On appelle oy la k-éme expression symétrique élémentaire en x1, ..., z,.

REMARQUE 3.17
En particulier, o est la somme et o, le produit de x4, ..., x,.

THEOREME 3.18 (Formules de Viéte)

Soit P = Z arX"* € K[X] un polynome scindé de degré n.
k=0

On note xy,...,x, les racines de P, éventuellement répétées selon leur multiplicité. Alors,
Uy
k Yn—k
Vk e [1,n],0r = (—1)"—,
Qp
ol oy, est la k-eme expression symétrique élémentaire en les racines x1,...,T,.

REMARQUE 3.19
Si P =aX?+bX + ¢ a pour racines z; et x,, on retrouve les formules

c
T1+x9=—— et 119 = —.
a a

3.4 Interpolation de Lagrange

LEMME 3.20 (Polynémes de Lagrange)
Soient xy,...,x, deur a deux distincts dans K. Pour tout i € [1,n], il existe un unique
polynome L; € K,_1][X] tel que ¥j € [1,n], L;(z;) = d; ;.
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THEOREME 3.21 (Interpolation de Lagrange)
Soient xq,...,x, deuxr a deux distincts dans K. Soient y1,...,y, € K. Il existe un unique
polynome L € K,,_1[X] tel que Vi € [1,n], L(x;) = y;.

REMARQUE 3.22

Soit f : R — R, soient n réels distincts z1, ..., x,. Il existe donc un unique L € R,,_1[X]
tel que L(z;) = f(x;), pour tout i € [1,n].

Ce polynome est le polynéme d’interpolation de f en les points z;.

3.5 Factorisation dans C[X]| et R[X]

PROPOSITION 3.23 (Corps algébriquement clos)
Les assertions suivantes sont équivalentes :
1. Tout polynéome P € K[X] non constant a une racine dans K.
2. Tout polynome P € K[X]| non nul est scindé.
3. Les irréductibles de K[X] sont les associés des polynomes X — «, ot a € K.

DEFINITION 3.24 (Corps algébriquement clos)
Si K vérifie I'une des assertions précédentes, on dit que K est algébriquement clos.

REMARQUES 3.25
— R n’est pas algébriquement clos : le polynéme X? 4+ 1 n’a pas de racines dans R.
— Un corps fini n’est pas algébriquement clos. Notons en effet a4, ..., o, les éléments

q
d’un corps fini K. Alors P = H(X — ;) + 1 n’a pas de racines dans K, puisque

i=1
P(z) =1, pour tout = € K.

THEOREME 3.26 (d’Alembert-Gauss)
C est algébriguement clos.

COROLLAIRE 3.27 (Factorisation en irréductibles dans C[X])

Soit P € C[X], non nul.
1l existe ay, ..., a, € C deux a deux distincts, nq,...,n, > 1 et X € C* tels que

pP= )\f[(X — )™,
=1

Cette décomposition est unique a [’ordre prés des facteurs.

PROPOSITION 3.28 (Polyndmes irréductibles de R[X])
Les polynomes irréductibles de R[X] sont les associés des polynémes :
— X —a,ouaeR;
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— X?4+aX +b, ot a,b€R sont tels que a* — 4b < 0.

COROLLAIRE 3.29 (Factorisation en irréductibles dans R[X])

Soit P € R[X]| —{0}.

Il existe ay,...,a, € R deur a deuz distincts, ny,...,n, > 1, (B1,7),...,(Bs,vs) € R?,
deuz a deux distincts tels que 532 —4vy; <0, my,...,my>1 et A € R" tels que :

S

P= AT =)™ TT(X? + 8, + ;)™
i=1

=1

La décomposition est unique a l’ordre prés des facteurs dans chaque produit.
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