
Polynômes

Jeremy Daniel

Les géomètres se sont beaucoup
occupés de la résolution générale des
équations algébriques, et plusieurs
d’entre eux ont cherché à en prouver
l’impossibilité ; mais si je ne me
trompe pas, on n’y a pas réussi
jusqu’à présent. J’ose donc espérer que
les géomètres recevront avec
bienveillance ce mémoire qui a pour
but de remplir cette lacune dans la
théorie des équations algébriques.

Niels Henrik Abel 1

On désigne par K un corps quelconque.

1 Présentation de K[X ]

1.1 L’anneau K[X]

Définition 1.1 (Suites à support fini)
Une suite (un) ∈ KN est à support fini s’il existe N ∈ N tel que ∀n ≥ N, un = 0.

Notation 1.2
On note K(N) l’ensemble des suites à support fini.

Définition 1.3 (Opérations sur K(N))
Soient (un)n∈N, (vn)n∈N ∈ K(N). Soit λ ∈ K. On définit

− (un)n∈N + (vn)n∈N = (un + vn)n∈N ∈ K(N) ;
− λ(un)n∈N = (λun)n∈N ;

1. Phrase introductive du Mémoire sur les équations algébriques, où l’on démontre l’impossibilité de la
résolution de l’équation générale du cinquième degré.
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− (ui)i∈N × (vj)j∈N = (wk)k∈N, où pour tout k ∈ N :

wk =
∑
i+j=k

uivj.

Remarque 1.4
La somme et la multiplication externe par un élément de K sont déjà définies sur KN. En
revanche, le produit de convolution n’est pas la restriction du produit usuel défini sur KN.

Définition 1.5 (Indéterminée X)
On note X ∈ K(N) la suite (δn,1)n∈N.

Lemme 1.6 (Calcul de Xk)
Pour tout k ∈ N, on définit Xk comme le k-ème itéré de X pour la loi ×. Alors,

∀k ∈ N, Xk = (δk,n)n∈N.

Remarque 1.7
Si P = (pk)k∈N ∈ K(N), on a donc P =

∑
k∈N

pkX
k, la somme étant en réalité finie puisque pk

est nul à partir d’un certain rang. On utilise systématiquement ce mode de représentation
des éléments de K(N).

Définition 1.8 (Ensemble des polynômes K[X])
On note K[X], ce qui a été dénoté jusque là par K(N). Les éléments de K[X] sont les
polynômes à coefficients dans K.

Remarque 1.9
On pourra parfois utiliser une autre lettre T , U , Y , Z... au lieu de X. On évitera cependant
l’emploi d’une lettre minuscule.

Remarque 1.10
Soient P =

∑
k

pkX
k et Q =

∑
k

qkX
k. Soit λ ∈ K.

Les opérations dans K[X] sont données par :

− λP =
∑
k

λpkX
k ;

− P +Q =
∑
k

(pk + qk)X
k ;

− PQ =
∑
k

( ∑
i+j=k

piqj
)
Xk.

Théorème 1.11 (K[X] est un anneau commutatif)
Muni des lois + et ×, K[X] est un anneau commutatif.
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Définition 1.12 (Degré)
Soit P =

∑
pkX

k ∈ K[X]. On définit le degré de P par

degP =

{
−∞ si P = 0

max{k ∈ N | pk ̸= 0} sinon.

Remarque 1.13

Si d est le degré de P ̸= 0, on peut donc écrire P =
d∑

k=0

pkX
k. On prendra garde au fait

que réciproquement une écriture P =
d∑

k=0

pkX
k implique seulement que degP ≤ d (le

coefficient pd pouvant être nul).

Notation 1.14 (Kn[X])
Pour tout n ∈ N, on note Kn[X] l’ensemble des polynômes de degré ≤ n.

Définition 1.15 (Coefficient dominant, coefficient constant)

Soit P =
d∑

k=0

pkX
k un polynôme non nul de degré d.

On appelle pd le coefficient dominant de P , p0 le coefficient constant de P .

Définition 1.16 (Polynôme unitaire, polynôme constant)
Un polynôme P est unitaire s’il est non nul et si son coefficient dominant est égal à 1.
Un polynôme est constant s’il est nul ou de degré 0.

Remarque 1.17
On identifie les polynômes constants aux éléments de K.

Proposition 1.18 (Degré de la somme, du produit)
Soient P,Q ∈ K[X].

− deg(P +Q) ≤ max(degP, degQ), avec égalité si degP ̸= degQ.
− deg(PQ) = degP + degQ.

Corollaire 1.19 (Intégrité de K[X])
L’anneau K[X] est intègre.

Corollaire 1.20 (Inversibles de K[X])
Les inversibles de K[X] sont les polynômes constants non nuls.

Définition 1.21 (Polynômes associés)
Deux polynômes P et Q sont associés s’ils sont tous les deux nuls, ou s’il existe λ ∈ K tels
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que P = λQ.

Remarque 1.22
On définit ainsi une relation d’équivalence sur K[X]. Un ensemble de représentants des
classes est formé par le polynôme nul et l’ensemble des polynômes unitaires.

1.2 Composition et évaluation

Définition 1.23 (Polynôme composé)
Soient P et Q deux polynômes. On note P =

∑
k

pkX
k. On définit le polynôme composé

P ◦Q – noté parfois P (Q) – par P ◦Q =
∑
k

pkQ
k.

Attention !
Comme pour les fonctions, P ◦Q ̸= Q ◦ P en général.

Remarque 1.24
En particulier, en prenant Q = X, on a P ◦X = P . On notera indifféremment P ou P (X)
par la suite.

Proposition 1.25 (Degré du polynôme composé)
Soient P,Q ∈ K[X], avec Q non nul. On a :

deg(P ◦Q) = degP × degQ.

Définition 1.26 (Évaluation)
Soit P =

∑
k

pkX
k et a ∈ K. L’évaluation de P en a – notée P (a) – est P (a) =

∑
k

pka
k.

Définition 1.27 (Polynômes et applications polynomiales)
Soit P ∈ K[X]. On note P̃ ∈ KK la fonction définie par P̃ (a) = P (a), pour tout a ∈ K.
On définit ainsi une application Φ : K[X] → KK, par Φ(P ) = P̃ .

Remarque 1.28
L’application Φ est compatible avec la somme, le produit, la multiplication externe par un
élément de K et avec la composition.

4



1.3 Dérivation

Définition 1.29 (Polynôme dérivé)

Soit P =
d∑

k=0

pkX
k. Son polynôme dérivé, noté P ′ est

P ′ =
d∑

k=1

kpkX
k−1 =

d−1∑
k=0

(k + 1)pk+1X
k.

On définit récursivement P (k) par P (0) = P et P (k) =
(
P (k−1)

)′, pour k ≥ 1.

Remarque 1.30
Pour K = R, cette définition est compatible avec la notion classique de dérivée des appli-
cations polynomiales.

Proposition 1.31 (Degré du polynôme dérivé)
Si car(K) = 0 et si P n’est pas constant, degP ′ = degP − 1.

Proposition 1.32 (Formules sur la dérivation)
Soient P,Q ∈ K[X], soient λ, µ ∈ K, soit n ∈ N.

− (λP + µQ)′ = λP ′ + µQ′ ;
− (PQ)′ = P ′Q+ PQ′ ;

− Formule de Leibniz : (PQ)(n) =
n∑

k=0

(
n

k

)
P (k)Q(n−k) ;

− (P ◦Q)′ = Q′ × P ′ ◦Q.

Théorème 1.33 (Formule de Taylor formelle)
On suppose car(K) = 0. Soit P ∈ K[X] de degré d, soit a ∈ K.

P =
d∑

k=0

P (k)(a)

k!
(X − a)k.

Remarque 1.34
Ainsi, un polynôme P est entièrement déterminé par la suite des valeurs P (k)(a), où k ∈ N.

2 Arithmétique de K[X ]

2.1 Division euclidienne

Définition 2.1 (Relation de divisibilité)
Soient A,B ∈ K[X]. On dit que B divise A – ou que B est un diviseur de A ou que A est
un multiple de B – s’il existe Q ∈ K[X] tel que A = B ×Q.
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Proposition 2.2
Soient A,B ∈ K[X] tels que A divise B et B divise A. Alors, A et B sont associés.

Remarque 2.3
La relation de divisibilité est ainsi une relation d’ordre (non totale) sur l’ensemble des
classes d’équivalence pour la relation être associé.

Théorème 2.4 (Division euclidienne dans K[X])
Soient A,B ∈ K[X], avec B ̸= 0.
Il existe un unique couple (Q,R) ∈ K[X]2 tel que : A = BQ+R et degR < degB.

Définition 2.5 (Quotient et reste)
Dans le théorème précédent, Q est le quotient dans la division euclidienne de A par B, R
est le reste.

Remarque 2.6
B divise A ssi le reste dans la division euclidienne de A par B est nul.

Définition 2.7 (Idéal dans un anneau commutatif)
Soit A un anneau commutatif. Un idéal I de A est une partie I de A telle que

− I est un sous-groupe de (A,+) ;
− ∀a ∈ A, x ∈ I, xa ∈ I.

Exercice 2.8
Montrer que si un idéal I contient un élément inversible de A, alors I = A.
En déduire quels sont les idéaux d’un corps K.

Définition 2.9 (Idéal principal, anneau principal)
Un idéal I d’un anneau commutatif A est principal s’il est de la forme xA = {xa, a ∈ A},
pour un élément x ∈ A.
Un anneau est principal s’il est commutatif, intègre et si tous ses idéaux sont principaux.

Exemples 2.10
− Les idéaux de Z étant en particulier des sous-groupes de Z, ils sont de la forme nZ,

pour un n ∈ Z. Donc, Z est un anneau principal.
− L’anneau Z[X] (sous-anneau de Q[X] des polynômes à coefficients entiers) n’est pas

principal : l’idéal I =
{
2k +XP, (k, P ) ∈ Z × Z[X]

}
n’est pas principal.

Corollaire 2.11 (K[X] est un anneau principal)
K[X] est un anneau principal : les idéaux de K[X] sont de la forme AK[X], où A ∈ K[X].
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Remarque 2.12
Si A et B sont deux générateurs du même idéal, alors ils sont associés. En général, on
choisira le générateur unitaire (pour un idéal non nul) si on a besoin d’en fixer un.

Remarque 2.13
Cet énoncé explique en grande partie pourquoi l’arithmétique de K[X] est très proche de
celle de Z.

2.2 PGCD, PPCM

Définition 2.14 (PGCD de deux polynômes)
Soient A,B ∈ K[X]. On appelle PGCD de A et B tout générateur de l’idéal

AK[X] +BK[X] =
{
AP +BQ, (P,Q) ∈ K[X]2

}
.

Notation 2.15
Les PGCD de A et B sont donc associés. L’unique unitaire (si (A,B) ̸= (0, 0)) est noté
A ∧B. Si (A,B) = (0, 0), on définit 0 ∧ 0 = 0.

Remarque 2.16
On a donc (A ∧B)K[X] = AK[X] +BK[X]. Conséquences :

− A ∧B est un diviseur commun de A et B.
− Il existe un couple (U, V ) ∈ K[X]2 tel que AU + BV = A ∧ B. On parle de relation

de Bézout.
− Les diviseurs communs à A et B sont exactement les diviseurs communs de A ∧B.
− A ∧B est l’unique polynôme unitaire de degré maximal divisant A et B.

Remarque 2.17
D’un point de vue algorithmique, le calcul de A∧B ou d’une relation de Bézout entre A et
B se fait comme pour les entiers, respectivement par l’algorithme d’Euclide et l’algorithme
d’Euclide étendu.

Exercice 2.18
Déterminer un PGCD et une relation de Bézout pour

A = X3 + 3X2 + 2X et B = X2 + 5X + 6.

Proposition 2.19 (A ∧B ne dépend pas du corps)
Soient L un corps, tel que K est un sous-corps de L. Soient A,B ∈ K[X]. En considérant
A et B dans L[X], on calcule (A ∧B) dans L[X]. Alors, A ∧B ∈ K[X].

Remarque 2.20
Le cas le plus important en pratique est celui où K = R et L = C. Le PGCD unitaire de
deux polynômes à coefficients réels, calculé dans C[X], est en fait à coefficients réels.

7



Définition 2.21 (PPCM de deux polynômes)
Soient A,B ∈ K[X]. On appelle PPCM de A et B tout générateur de l’idéal

AK[X] ∩BK[X].

Notation 2.22
Deux PPCM de A et B sont associés. On note A∨B l’unique PPCM unitaire – si A et B
sont non nuls. Si A ou B est nul, A ∨B = 0.

Remarque 2.23
On a donc (A ∨B)K[X] = AK[X] ∩BK[X]. Conséquences :

− A ∨B est un multiple commun de A et B.
− Les multiples communs de A et B sont exactement les multiples de A ∨B.
− A ∨B est l’unique polynôme unitaire de degré minimal multiple de A et B.

Définition 2.24 (PGCD et PPCM d’un nombre fini de polynômes)
Soient A1, . . . , An ∈ K[X]. On appelle

− PGCD de A1, . . . , An tout générateur de l’idéal A1K[X] + · · ·+ AnK[X].
− PPCM de A1, . . . , An tout générateur de l’idéal A1K[X] ∩ · · · ∩ AnK[X].

Notation 2.25
Si (A1, . . . , An) ̸= (0, . . . , 0), on note A1 ∧ · · · ∧ An l’unique PGCD unitaire de A1, . . . , An

(0 si tous les Ai sont nuls). Si aucun des Ai n’est nul, on note A1∨· · ·∨An l’unique PPCM
unitaire de A1, . . . , An (0 si l’un des Ai est nul).

Remarque 2.26
Ainsi,

− Les diviseurs communs de A1, . . . , An sont les diviseurs de A1 ∧ · · · ∧ An.
− Les multiples communs de A1, . . . , An sont les multiples de A1 ∨ · · · ∨ An.
− Il existe (U1, . . . , Un) ∈ K[X] tels que A1U1 + · · ·+ AnUn = A1 ∧ · · · ∧ An.
− ∧ et ∨ sont associatives et commutatives.

2.3 Polynômes irréductibles et polynômes premiers entre eux

Définition 2.27 (Polynômes premiers entre eux)
Soient A,B ∈ K[X]. Ils sont premiers entre eux si A ∧B = 1.

Théorème 2.28 (Identité de Bézout)
Deux polynômes A,B ∈ K[X] sont premiers entre eux ssi ∃(U, V ) ∈ K[X]2 : AU +BV = 1.

Proposition 2.29
Soient A,B ∈ K[X] non tous les deux nuls. Alors,

A

A ∧B
et

B

A ∧B
sont premiers entre

eux.
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Proposition 2.30 (Polynôme premier avec un produit)
Soient A,B1, . . . , Bn ∈ K[X].
Alors, A est premier avec B1 . . . Bn ssi A est premier avec chaque Bi.

Proposition 2.31 (Produit de premiers entre eux)
Soient A,B,C ∈ K[X].
Si A et B divisent C et que A et B sont premiers entre eux, alors AB divise C.

Proposition 2.32 (Lemme de Gauss)
Soient A,B,C ∈ K[X].
On suppose que A | BC et que A est premier avec B, alors A divise C.

Définition 2.33 (Premiers entre eux dans leur ensemble)
Des polynômes P1, . . . , Pn ∈ K[X] sont premiers entre eux dans leur ensemble si

P1 ∧ · · · ∧ Pn = 1.

Remarque 2.34
Comme pour les entiers, on notera la distinction entre premiers entre eux dans leur en-
semble et deux à deux premiers entre eux. Considérer par exemple P1 = X(X − 1),
P2 = X(X − 2) et P3 = (X − 1)(X − 2) dans R[X].

Définition 2.35 (Polynôme irréductible)
Un polynôme A ∈ K[X] est irréductible s’il n’est pas constant et si

∀(B,C) ∈ K[X]2, (A = BC) =⇒ (degB = 0 ou degC = 0).

Remarque 2.36
Si deux polynômes sont associés, l’un est irréductible ssi l’autre l’est.

Proposition 2.37 (X − α est irréductible)
Pour tout α ∈ K, X − α est irréductible dans K[X].

Proposition 2.38
Soient A,B ∈ K[X]. Si A est irréductible et ne divise pas B, alors A est premier avec B.

Corollaire 2.39 (Lemme d’Euclide)
Soient A,B,C ∈ K[X] tels que A est irréductible et A divise BC.
Alors A divise B ou A divise C.

Théorème 2.40 (Factorisation en produit d’irréductibles)
Soit P ∈ K[X]− {0}. Il existe λ ∈ K∗, un nombre fini de polynômes irréductibles unitaires
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deux à deux distincts P1, . . . , Pk, des entiers n1, . . . , nk ≥ 1 tels que

P = λ

k∏
i=1

P ni
i .

Cette écriture est unique, à permutation près des facteurs.

Remarque 2.41
Les polynômes constants non nuls sont obtenus en considérant le produit vide (k = 0).

Proposition 2.42 (Divisibilité avec la factorisation)

Soient P = λ
k∏

i=1

P ni
i et Q = µ

k∏
i=1

Pmi
i deux polynômes écrits en produit d’irréductibles –

on convient que ni ou mi peut être nul. Alors,

P divise Q ⇐⇒ ∀i ∈ J1, kK, ni ≤ mi.

Corollaire 2.43 (PGCD et PPCM)

Avec les notations précédentes, P ∧Q =
k∏

i=1

P
min(ni,mi)
i et P ∨Q =

k∏
i=1

P
max(ni,mi)
i .

Corollaire 2.44 (PGCD × PPCM)
Si P,Q ∈ K[X], (P ∧Q)(P ∨Q) = PQ.

3 Racines d’un polynôme

3.1 Généralités

Définition 3.1 (Racine d’un polynôme)
Soient P ∈ K[X], α ∈ K. On dit que α est racine – ou zéro – de P si P (α) = 0.

Proposition 3.2 (Factorisation par X − α)
Soient P ∈ K[X], α ∈ K. Alors, α est racine de P ssi X − α divise P .

Proposition 3.3 (Factorisations successives)
Soit P ∈ K[X], soient α1, . . . , αn ∈ K deux à deux distincts. On suppose que pour tout

i ∈ J1, nK, αi est racine de P . Alors,
n∏

i=1

(X − αi) divise P .

Corollaire 3.4 (Borne sur le nombre de racines)
Un polynôme P ∈ K[X] de degré d a au plus d racines distinctes.
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Remarque 3.5
En particulier, si un polynôme a une infinité de racines, alors il est nul.

Corollaire 3.6 (Morphisme d’évaluation)
L’application Φ : K[X] → KK, P 7→ P̃ est injective ssi K est infini.

Définition 3.7 (Multiplicité d’une racine)
Soit P ∈ K[X]− {0}, soit α ∈ K. La multiplicité – ou ordre de multiplicité – de α dans P
est le plus grand entier k tel que (X − α)k divise P .

Remarque 3.8
Ainsi, α est racine de P ssi la multiplicité de α dans P est au moins 1.
Si, la multiplicité est au moins 2, on parle de racine multiple.

Proposition 3.9
Avec les notations précédentes, α est racine de P de multiplicité p ssi

∃Q ∈ K[X] : A = Q× (X − α)p et Q(α) ̸= 0.

Proposition 3.10 (Factorisations successives, avec multiplicité)
Soient P ∈ K[X], α1, . . . , αr ∈ K, deux à deux distincts de multiplité n1, . . . , nr dans P .

Alors,
r∏

i=1

(X − αi)
ni divise P .

Définition 3.11 (Polynôme scindé, scindé à racines simples)

Un polynôme P ∈ K[X] non nul est scindé s’il s’écrit P = λ
r∏

i=1

(X − αi)
ni , où les αi sont

deux à deux distincts et ni ≥ 1.
Si de plus, pour tout i, ni = 1, on dit qu’il est scindé à racines simples.

Remarque 3.12
Un polynôme est scindé à racines simples s’il a autant de racines que son degré. Il est
scindé si la somme des multiplicité de ses racines est égale à son degré ; on dit encore que
son degré est égal à son nombre de racines, en comptant les multiplicités.

3.2 Multiplicité et dérivées successives

On suppose carK = 0.

Proposition 3.13
Soit P ∈ K[X]− {0}, soit α ∈ K.
Alors, α est racine de P d’ordre au moins k ssi P (α) = P ′(α) = · · · = P (k−1)(α) = 0.
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Corollaire 3.14 (Caractérisation de la multiplicité par les dérivées successives)
Avec les mêmes notations, α est racine de P d’ordre exactement k ssi

P (α) = P ′(α) = · · · = P (k−1)(α) = 0 et P (k)(α) ̸= 0.

Exercice 3.15
Soit P ∈ R[X].

− Montrer que si P est scindé à racines simples, alors P ′ aussi.
− Montrer que si P est scindé, alors P ′ aussi.

3.3 Relations coefficients-racines

Définition 3.16 (Expressions symétriques élémentaires)
Soient x1, . . . , xn ∈ K. On note, pour tout k ∈ J1, nK :

σk =
∑

1≤i1<i2<···<ik≤n

xi1xi2 . . . xik .

On appelle σk la k-ème expression symétrique élémentaire en x1, . . . , xn.

Remarque 3.17
En particulier, σ1 est la somme et σn le produit de x1, . . . , xn.

Théorème 3.18 (Formules de Viète)

Soit P =
n∑

k=0

akX
k ∈ K[X] un polynôme scindé de degré n.

On note x1, . . . , xn les racines de P , éventuellement répétées selon leur multiplicité. Alors,

∀k ∈ J1, nK, σk = (−1)k
an−k

an
,

où σk est la k-ème expression symétrique élémentaire en les racines x1, . . . , xn.

Remarque 3.19
Si P = aX2 + bX + c a pour racines x1 et x2, on retrouve les formules

x1 + x2 = − b

a
et x1x2 =

c

a
.

3.4 Interpolation de Lagrange

Lemme 3.20 (Polynômes de Lagrange)
Soient x1, . . . , xn deux à deux distincts dans K. Pour tout i ∈ J1, nK, il existe un unique
polynôme Li ∈ Kn−1[X] tel que ∀j ∈ J1, nK, Li(xj) = δi,j.
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Théorème 3.21 (Interpolation de Lagrange)
Soient x1, . . . , xn deux à deux distincts dans K. Soient y1, . . . , yn ∈ K. Il existe un unique
polynôme L ∈ Kn−1[X] tel que ∀i ∈ J1, nK, L(xi) = yi.

Remarque 3.22
Soit f : R → R, soient n réels distincts x1, . . . , xn. Il existe donc un unique L ∈ Rn−1[X]
tel que L(xi) = f(xi), pour tout i ∈ J1, nK.
Ce polynôme est le polynôme d’interpolation de f en les points xi.

3.5 Factorisation dans C[X] et R[X]

Proposition 3.23 (Corps algébriquement clos)
Les assertions suivantes sont équivalentes :

1. Tout polynôme P ∈ K[X] non constant a une racine dans K.
2. Tout polynôme P ∈ K[X] non nul est scindé.
3. Les irréductibles de K[X] sont les associés des polynômes X − α, où α ∈ K.

Définition 3.24 (Corps algébriquement clos)
Si K vérifie l’une des assertions précédentes, on dit que K est algébriquement clos.

Remarques 3.25
− R n’est pas algébriquement clos : le polynôme X2 + 1 n’a pas de racines dans R.
− Un corps fini n’est pas algébriquement clos. Notons en effet α1, . . . , αq les éléments

d’un corps fini K. Alors P =

q∏
i=1

(X − αi) + 1 n’a pas de racines dans K, puisque

P (x) = 1, pour tout x ∈ K.

Théorème 3.26 (d’Alembert-Gauss)
C est algébriquement clos.

Corollaire 3.27 (Factorisation en irréductibles dans C[X])
Soit P ∈ C[X], non nul.
Il existe α1, . . . , αr ∈ C deux à deux distincts, n1, . . . , nr ≥ 1 et λ ∈ C∗ tels que

P = λ
r∏

i=1

(X − αi)
ni .

Cette décomposition est unique à l’ordre près des facteurs.

Proposition 3.28 (Polynômes irréductibles de R[X])
Les polynômes irréductibles de R[X] sont les associés des polynômes :

− X − α, où α ∈ R ;
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− X2 + aX + b, où a, b ∈ R sont tels que a2 − 4b < 0.

Corollaire 3.29 (Factorisation en irréductibles dans R[X])
Soit P ∈ R[X]− {0}.
Il existe α1, . . . , αr ∈ R deux à deux distincts, n1, . . . , nr ≥ 1, (β1, γ1), . . . , (βs, γs) ∈ R2,
deux à deux distincts tels que β2

j − 4γj < 0, m1, . . . ,ms ≥ 1 et λ ∈ R∗ tels que :

P = λ

r∏
i=1

(X − αi)
ni

s∏
j=1

(X2 + βjX + γj)
mj

La décomposition est unique à l’ordre près des facteurs dans chaque produit.
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