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DM 12 - Interpolation polynomiale

Dans ce problème, on étudie à quel point les polynômes interpolateurs d’une fonction f donnent
une bonne approximation de la fonction quand le nombre de points d’interpolation augmente.

1 Estimation fondamentale

Si f est une fonction à valeurs réelles définie sur [a,b] et si x = (x0, . . . , xn) est un (n + 1)-uplet
de points deux à deux distincts dans [a,b], on note L f ,x l’unique polynôme dans Rn[X ] tel que
L f ,x (xi ) = f (xi ), pour tout i ∈ �0,n�

1. Soit u un point de [a,b] distinct des xi . Montrer qu’il existe une constante Ku telle que

g : x 7→ f (x)−L f ,x (x)−Ku

n∏
i=0

(x −xi )

s’annule en x0, . . . , xn et en u.

2. On suppose maintenant f de classe C n+1.
Montrer qu’il existe un réel cu ∈ [a,b] tel que g (n+1)(cu) = 0.

3. En déduire l’identité suivante : f (u)−L f ,x (u) = f (n+1)(cu)

(n +1)!

n∏
i=0

(u −xi ).

On note Px le polynôme
n∏

i=0
(X −xi ).

4. Montrer la majoration ∥ f −L f ,x∥∞ ≤ ∥ f (n+1)∥∞
(n +1)!

∥Px∥∞.

2 Fonctions à croissance raisonnable

On fixe un entier n et on considère le (n +1)-uplet x = (x0, . . . , xn) donné par

∀k ∈ �0,n�, xk = a +k
b −a

n
.

5. Montrer la majoration ∥Px∥∞ ≤ n!

4

(
b −a

n

)n+1

.

Une fonction f de classe C ∞ sur le segment [a,b] est dite à croissance raisonnable s’il existe deux

constantes C > 0 et r ≥ b −a telles que : ∀n ∈N,∥ f (n)∥∞ ≤C
n!

r n .

6. Montrer que la fonction exp a une croissance raisonnable sur tout segment [a,b].

7. Si α> 0, on définit la fonction fα : x 7→ 1

α2 +x2 sur le segment [−1,1].
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a) Déterminer les valeurs des dérivées successives de fα en 0.

b) En déduire que siα est suffisamment petit, la fonction fα n’est pas à croissance raisonnable
sur [−1,1].

8. On suppose que f a une croissance raisonnable sur le segment [a,b]. Montrer qu’il existe

une constante C > 0 telle que : ∥ f −L f ,x∥∞ ≤C
n!

nn .

9. En déduire que si f a une croissance raisonnable sur le segment [a,b], alors ∥ f −L f ,x∥∞ tend
vers 0 quand n tend vers l’infini.

3 Phénomène de Runge

Dans cette partie, on montre que les fonctions fα introduites dans la partie précédente ne sont pas
bien interpolées par des polynômes, ce qui est suggéré par la question 9. C’est le phénomène de
Runge.

On modifie les points d’interpolation utilisés de la façon suivante. Pour tout n ∈ N∗ et pour tout

k ∈ �0,n − 1�, on note ak,n = 2k +1

2n
. Les 2n points ±ak,n permettent de définir un polynôme

interpolateur Rn,α : c’est l’unique polynôme de R2n−1[X ] tel que

∀k ∈ �0,n −1�,Rn,α(±ak,n) = fα(±ak,n).

10. Montrer que Rn,α définit une fonction polynomiale paire. En déduire que son degré est
inférieur ou égal à 2n −2.

On définit le polynôme Qn,α = 1− (X 2 +α2)Rn,α.

11. Montrer qu’il existe λ ∈R tel que ∀x ∈ [−1,1],Qn,α(x) =λ
n−1∏
k=0

(x2 −a2
k,n).

12. Déterminer la valeur de λ en considérant Qn,α(αi ).

13. En déduire que pour tout x ∈ [−1,1], fα(x)−Rn,α(x) = (−1)n

x2 +α2

n−1∏
k=0

x2 −a2
k,n

α2 +a2
k,n

.

On souhaite montrer que, si α est suffisamment petit, | fα(1)−Rn,α(1)|→+∞, quand n →+∞.

14. On note hα la fonction t 7→ ln

(
1− t 2

α2 + t 2

)
(a) Montrer que hα est continue et décroissante sur [0,1[.

Pour ε ∈]0,1/2[, on note Jα,ε =
∫ 1−ε

ε
hα(t )d t . Sous réserve d’existence, on note Jα la limite

de Jα,ε quand ε→ 0+.

(b) Montrer que Jα,ε =
∫ 1−ε

ε
lnu du +

∫ 2−ε

1+ε
lnu du −

∫ 1−ε

ε
ln(α2 + t 2)d t .
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(c) En déduire que Jα est bien défini et vaut 2ln2− ln(1+α2)−2αarctan

(
1

α

)
.

(d) En déduire que Jα > 0 si α est suffisamment petit.

Pour tout n ∈N∗, on note Sn,α = 1

n

n−1∑
k=0

hα(ak,n).

(e) Montrer que Jα,1/2n + 1

n
hα

(
1− 1

2n

)
≤ Sn,α ≤ 1

n
hα

(
1

2n

)
+ Jα,1/2n .

(f) En déduire que Sn,α→ Jα, quand n →+∞.

(g) Conclure.

4 Interpolation en les nœuds de Tchebychev

Du point de vue de l’interpolation polynomiale, le choix de points d’interpolation espacés de façon
régulière n’est pas le plus pertinent. Étant fixé n ∈ N∗, il est naturel – au vu de la question 7 – de
chercher un n +1-uplet x = (x0, . . . , xn) minimisant la quantité ∥Px∥∞.

15. a) Montrer qu’il existe, pour tout n ∈N, un unique polynôme Tn ∈R[X ] tel que

∀θ ∈R,Tn(cosθ) = cos(nθ).

Préciser le degré et le coefficient dominant de Tn .

b) Calculer T0 et T1. Montrer la relation de récurrence suivante :

∀n ∈N : Tn+2 +Tn = 2X Tn+1.

c) Déterminer les racines de Tn et en déduire une factorisation de Tn .

On se place désormais sur le segment [a,b] = [−1,1].

16. Montrer que ∥Tn∥∞ = 1. Montrer qu’il existe exactement n + 1 points −1 = y0 < y1 < ·· · <
yn = 1 en lesquels Tn vaut ±1. Préciser la valeur de Tn(yk ).

17. Soit P un polynôme unitaire de degré n. En considérant le polynôme Q = P − Tn

2n−1 et les

valeurs de Q en les points yk , montrer que ∥P∥∞ ≥ 1

2n−1 .

Ceci montre que, parmi les polynômes unitaires P de degré n,
Tn

2n−1 est le seul minimisant ∥P∥∞
sur [−1,1]. Cela justifie d’utiliser les racines de Tn pour l’interpolation polynomiale d’une fonction
sur [−1,1] – ou sur un autre segment à l’aide d’une transformation affine.
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