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DM 13 – Nombres algébriques

Les espaces vectoriels considérés dans ce problème sont définis sur le corpsQdes nombres rationnels.

On dit qu’un espace vectoriel E est de dimension finie s’il admet une partie génératrice finie – c’est-
à-dire s’il existe une partie finie A ⊂ E telle que E = Vect(A). On admet (provisoirement) qu’un
sous-espace vectoriel d’un espace vectoriel de dimension finie est de dimension finie.

1 L’algèbreQ[α]

Soit α un nombre complexe. On note φα l’application définie deQ[X ] dans C par φα(P ) = P (α).

1. Montrer que φα est un morphisme d’anneaux et une application linéaire.

2. On noteQ[α] l’image de φα. Montrer que c’est un sous-anneau de C et que c’est leQ-espace
vectoriel engendré par

{
αn ,n ∈N}

.

3. Montrer l’équivalence entre les assertions suivantes :

i) Q[α] est de dimension finie.

ii) Il existe d ∈N tel que αd ∈ Vect
(
αk ,k ∈ �0,d −1�).

iii) φα n’est pas injectif.

On dit que α est algébrique si ces conditions sont vérifiées, transcendant sinon.

4. Soit α un nombre algébrique. Montrer que Kerφα est un idéal de Q[X ]. En déduire qu’il
existe un unique polynôme unitaire Pα ∈Q[X ] tel que Kerφα = {

PαQ,Q ∈Q[X ]
}
.

On dit que Pα est le polynôme minimal de α. On dit que α est de degré d si Pα est de degré d .

5. Montrer que si α est algébrique, alors Pα est irréductible dansQ[X ].

6. Déterminer les nombres algébriques de degré 1.

7. Montrer queα ∈C est algébrique de degré 2 ssiα est racine d’un trinôme X 2+mx+p ∈Q[X ],
dont le discriminant n’est pas le carré d’un rationnel.

8. On suppose que α est algébrique.

(a) Soit β ∈ Q[α] \
{
0
}
. Montrer que la multiplication par β, mβ : C→ C, z 7→ βz induit un

automorphisme deQ[α]. Pour la surjectivité, introduire une relation de Bézout.

(b) En déduire queQ[α] est un corps.

9. Montrer réciproquement que siQ[α] est un corps, alors α est algébrique.

Dans la suite, on noteQ⊂C l’ensemble des nombres algébriques.
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2 Le corpsQ des nombres algébriques

10. Soientα,β deux nombres algébriques, de degré respectif d et d ′. On noteQ[α,β] leQ-espace
vectoriel engendré par

{
αkβℓ, (k,ℓ) ∈N2}.

(a) Montrer queQ[α,β] est engendré par
{
αkβℓ, (k,ℓ) ∈ �0,d −1�×�0,d ′−1�}.

(b) En déduire que α+β et αβ sont algébriques.

11. Montrer queQ est un corps.

12. Montrer queQ est de plus stable par radicaux1 : ∀α ∈C,∀n ∈N∗,αn ∈Q =⇒ α ∈Q.

3 Mesure d’irrationalité et constante de Liouville (facultatif )

Soit x un nombre réel. La mesure d’irrationalité de x – notée µ(x) – est la borne inférieure de

l’ensemble Ax des réels µ pour lesquels : ∃A > 0,∀p ∈Z,∀q ∈N∗, x ̸= p

q
=⇒ |x − p

q
| ≥ A

qµ
.

On convient que, si aucun µ ne vérifie cette condition, alors la mesure d’irrationalité de x est +∞.

13. Montrer que µ(x) ≥ 1, avec égalité si x ∈Q.

14. On suppose que x est algébrique de degré d ≥ 2 et on souhaite montrer que µ(x) ≤ d .2

(a) Justifier qu’il existe un polynôme P à coefficients entiers, de degré d , sans racine rationnelle
tel que P (x) = 0.

(b) Soit (p, q) ∈Z×N∗. On suppose que
p

q
∈ [x −1, x +1].

Montrer qu’il existe M > 0, indépendant de p et q , tel que

∣∣∣∣P (
p

q

)∣∣∣∣≤ M

∣∣∣∣x − p

q

∣∣∣∣.
(c) Montrer que qd P

(
p

q

)
∈Z\

{
0
}
, puis que

∣∣∣∣x − p

q

∣∣∣∣≥ 1

M qd
.

(d) En déduire que µ(x) ≤ d .

Ainsi, les nombres de Liouville sont transcendants.

15. Montrer qu’un réel x est un nombre de Liouville ssi pour tout d ∈ R, il existe une infinité de

couples (p, q) ∈Z×N∗ tels que 0 <
∣∣∣∣x − p

q

∣∣∣∣< 1

qd
.

16. En déduire qu’un réel x est un nombre de Liouville ssi

∀n ∈N,∃(pn , qn) ∈Z×�2,+∞�,0 <
∣∣∣∣x − pn

qn

∣∣∣∣< 1

qn
n

.

17. On note L = lim
n→+∞

n∑
k=0

1

10k !
la constante de Liouville3.

Montrer que L est bien définie et que µ(L ) =+∞.

1On peut s’intéresser au plus petit sous-corps K de C stable par radicaux. Il résulte des travaux d’Abel et Galois que
K est strictement inclus dansQ. Ainsi certaines racines de polynômes ne s’expriment pas en extrayant des racines.

2En fait, la mesure d’irrationalité d’un réel algébrique irrationnel est toujours égale à 2. Ce théorème, démontré par
Klaus Roth (1925-2015) en 1955, lui a valu la médaille Fields.

3D’après Joseph Liouville (1809-1882), qui a donné cet exemple parmi d’autres en 1844.
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