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DM 12 - Interpolation polynomiale — Corrigé

1 Estimation fondamentale

1. Remarquons déja que g s’annule en les x; quelle que soit la valeur de u, car pour tout i €

n
[0,n], f(xi) =Lgx(x;). Onag(u) =0 < f(uw)—Lyx(w)—Ky H(u—x,-) = 0. Une seule valeur
i=0
de K, convient : l
_fW)—Lyx(w)

M u—x)

2. La fonction g s’annule en n + 2 points distincts sur [a, b]. Par application du théoréme de
Rolle entre deux points consécutifs d’annulation de g, on en déduit que g’ a n+ 1 points
d’annulation distincts sur [a, b]. Par une récurrence finie rapide, on montre que g(k) s’annule
n+ 2 — k fois sur [a, b], pour k € [0, 7+ 1]. En particulier, g""*? s’annule sur [a, b].

3. Ly¢x estun polyndme de degré n donc sa dérivée (n+1)-éme s'annule. La dérivée (n+1)-eme

n
de x — H (x — x;) est (n+1)! car c’est une application polynomiale unitaire de degré n + 1.
i=0
Donc, pour tout x € [a, b] :

g™V (x) = F* (x) - Ky (n+ L.

En appliquant a x = ¢, et en utilisant I'expression trouvée pour K, en question 1, on trouve

. fw) = Lg(u)
u u

0— (n+1) u fyx 1 !7

f (C ) H;l:()(u ;Ci) X(n )

ce qui donne I'égalité souhaitée.
4. Soitx € [a,b]. Ona:

) ~ f(n+1)(x) n N
| f(x) Lf&(x)l—‘ n+ D! g(x i) = (n+1Y

(n+1) (n+1)
lf (x| PL(x)] < If lloo
(n+1)!

1Pyl oo-

Comme I'inégalité est vraie pour tout x € [a, b], on peut passer a la borne supérieure a gauche

et ainsi obtenir : .
1" Do

Ll <
If = Lfxlloo = n+1)!

1 Pxlloo-

2 Fonctions a croissance raisonnable

n
5. Soit x € [a,b]. On a Py(x) = H(x — x;). Notons k € [0,n — 1] tel que xj < x < xg41. Pour tout
i=0

. . a .
i<kona:|x—xjl=x—-x;<(k—i+1) etpourtout j>k+1,0ona



7.

8.

9.

bh—
lXx—xjl=xj—x<(j- k)—a. De plus, le produit [(x — x;) (X — Xg+1)] = (X — Xg) (Xg4+1 — X) est
n

2

Xp+ X ) a P

kTR et il vaut (2—) . On en déduit que :
n

maximal (pour x € [xg, Xr+1] en le milieu x =

k-1 b-a b-a\> [ b-a 1(b-a\*!
g P __|2za (- )
|P£(x)|5i1:£(k l+1)( . )x( . ) xj:lg—z(] k) - 4( - ) (k+D'(n-Kk).
(k+D(n-k)!  n+l

n (&5

Il s’agit donc de montrer que (k+1)!(n—k)! < n!si k€ [0, n—1]. Or

(en dehors des termes extrémes valant 1, les plus petits coefficients binomiaux (Z sont obtenus

pourk=1ouk=p-1).

. PourtoutneNN, exp(") = exp. Comme exp est croissante et positive sur R, || exp(”) loo = €exp(b)
]

est indépendante de n. Fixons r = b — a. Par croissance comparée, on sait que — tend vers

+o0o quand 7 tend vers +oo. En particulier, il existe une constante C > 0 telle que, pour tout

n!
neN, exp(b) = C—.. Ce qui conclut.
r

exp(b)r
C est un majorant de la suite #, qui tend vers 0.
n!
. 1 1 .
a) So1tx€|]1€.0naﬁ:—,( - — _).Smtnel\l.Onadonc:
ac+x 2ai\x—al x+ai

1 -1)"n! -1)"n!
= L (COm
2ai\(x—ai)™!  (x+ai)t]
]
On évalue en 0: £ (0) = ————— (=1 + (=1)™*1). Apres simplifications, on trouve
fa (0 2m.(m.)nﬂ( (=D"). Ap p
que
f(") (0) = 0 si n est impair et f(") 0) = L!(—l)”/2 si n est pair
a - p a - an+2 p M
b) On a donc, pour tout 1 € N, [| [0 = [f2™(0)] = @nl g fa @ une croissance
' P » e Too = Ua Tog2nt2’ a
raisonnable sur [-1,1], on trouve doncun r =2 etun C >0 tels que Yn e N :
2n)! 2n)!
a2n = r2n :

Aisni, 2°" = O(r*™) = O(a®"). Et donc « doit étre < 2.

n!
Soit C>0, soit 7 = b—atels que Ve N, || f]lo < C—.. Parles questions 4 et 5, on a alors :
r

I f=L¢lloo < C (n+1)! n!(b_a)n+1
- < y o |
falleo =0T Tt T g\
Commer=b—-a,ona: o '
n. n!
”f_Lf,EHOOSanH_l SCW-

Par croissance comparée, on sait que le membre de droite dans I'inégalité précédente tend
vers 0, quand 7 tend vers +co. Donc si f a une croissance raisonnable sur [a, b], I'écart
I f = Ly xlleo tend vers 0, quand n tend vers +oo.



3 Phénomene de Runge

Dans cette partie, on montre que les fonctions f, introduites dans la partie précédente ne sont pas
bien interpolées par des polynémes, ce que la question 10 suggere.
C’est le phénomene de Runge.

On modifie les points d’interpolation utilisés de la facon suivante. Pour tout n € N* et tout

2k+1
k € [0,n—1], on note ay, =

. Les 2n points *ay , permettent de définir un polyndme

interpolateur R, 4 : c’est'unique polyndéme de Ry, [X] tel que
Vke[0,n—1], Ry q(xan) = fa(aky).

10. Le polyndme Q = R, o (—X) est de méme degré que R;, o etil vérife Vk € [0,n—11, Q(+ag,,) =
Ryo(Fay,n) = fa(Fak,n) = falag, ) car fy estune fonction paire.
Par unicité dans 'interpolation de Lagrange, on a donc égalité Q = Q(—X) ; donc, pour tout
xeR, Q(x) = Q(—x).
Légalité R, o = R, «(—X) montre que R, , est une combinaison linéaire de mondémes de
degré pair ; comme il est de degré < 2n—1, il est en fait de degré <2n —2.

On définit le polynome Qo =1— (X% + az)Rn,a.

11. Pourtout ke [0,n—1],ona

) ) a;  +a*
Qna(xakn) =1-(ay ,+a)Rpa(xain) =1-— 5 =0.
g a +a
k,n
n—-1 n-1 n-1
Donc, tous les +ay, , sont racines de Q,,q. Donc, [ (X—ay, ) x [[ X+ax,,) = [[ X*-a )
k=0 k=0 k=0

divise Q. Comme R, , est de degré < 2n—2, Q, 4 est de degré < 2n ; comme on I'a factorisé
par un polynéme de degré 2n, le facteur restant est une constante, qu’on appelle A.

12. OnaQuq(ai)=1- (@i)?+ az)Rn,a(ai) = 1. D’autre part,

n-1 n—-1
Qnalad) =A[] (@) - a; ) = D" [] (@ + a; ).
k=0 k=0
n—1 1
Donc, A = (-1)" H - -
e @2 + ai'n

13. Soit xe[-1,1].Ona:
1 1- Qn,a(x) _ Qn,a(x)

a?+x2 a?+x2 a4+ x?

fa (X) = Rpa(x) =

On remplace par '’expression trouvée ci-dessous pour Q, o pour conclure.

2
—r . . . .
14. (a) Comme ) est strictement positive sur [0, 1[, la fonction hy y est continue par
a

opérations élémentaires.



(b)

(©

(d)

(e)

-1 a?

——— = 1+ - Le dénominateur est croissant avec ¢,
ac+r ac+t

De plus, pour tout ¢ € [0, 1],
2

r . L ) .
donc ¢ — ——— est une fonction décroissante sur [0, 1[, donc hg aussi par croissance

a’+t
deIn.
On peut évidemment dériver. Mais dans ce cas, préférer dériver la fonction dans le In
plutét que tout hy, ce qui ne change rien et allege le calcul.

Pour ¢ €]0,1[, he(t) =In(1 - ) +In(1 + ) — In(a® + £?). Donc, en intégrant entre e et 1 — £
et par linéarité :

1-¢ 1-¢ 1-¢
Jae :f In(1- t)dt+f In(1 + t)dt—f In(a® + t%)dt.
o £ &

On conclut apres les changements de variable u = 1 — ¢ dans la premiére intégrale
(I'inversion des bornes est compensée par le fait que dt = —du) et u = 1+ ¢ dans la
deuxieme.

Notons I3, I, et I3 les trois intégrales ci-dessus dans I'expression de J, .
1-¢ . ) .
e ] vaut [xlnx - x] ¢ - Parcroissance comparée, ceci tend vers —1 quand € — 0.

* Lvaut [xlnx— x]l_g. Cecitend vers 2In2-2+1=2In2-1 quand € — 0.
* On calcule I3 par intégration par parties. On a:

- 242

I; = [tIn(a® + l_s—f —

3 =[¢In( )]8 e
) 9 11-¢ 1-¢ a2
= [tIn(a® + ¢ ‘—21—2£+f —
[#In( )]8 ( ) a2

= [tln(oz2 + tz)]i_s -2(1-2¢)-2a [ arctan (é) ] e

€
1
Ceci tend vers In(a® + 1) — 2 — 2aarctan (a) quand € — 0.

1

Donc, Jg, = I + I» — I3 converge vers 2In2 — In(a®+1) - 2a arctan(—) quand € — 0.
a

C’est donc la valeur de J,,.

Comme arctan a pour limite /2 en +oc0, on constate par opérations élémentaires que
Jo — 2In2 quand ¢ — 0. Comme 21In2, J, > 0 pour a suffisamment petit, par localisation
asymptotique.

anfl,n
Ona Jy1/2n= f hq(t)dt. Par relation de Chasles :
aO,n
n=2 pag,n
]a,l/Zn: Z ha(t)dt.
k=0Yak,n

Par décroissance de h,, et propriété de croissance de I'intégrale ;

n-2 1 n-2

1
Sna—ha(1/2n) = Z ha(ak+1,n) <Jai2n<— Z ha(ak,n) =Sna——ha(1-1/2n).
k=0 " =0 n

1
n
Les deux inégalités ainsi obtenues donnent la minoration et la majoration souhaitée de
Sn'a .



(f) Dans 'encadrement précédent, on a J4,1/2, — Jo quand n — +oo. Il s’agit donc de

1 1
montrer que — hqy(1/2n) et —h, (1-1/2n) tendent aussi vers 0, pour appliquer le théoréme
n n
d’encadrement. )
Pas de difficultés pour —hg(1/2n) car hy(1/2n) — hy(0) par continuité.
n

Pour hy (1 —1/2n), il faut faire attention que hy n’est pas définie en 1. Cependant, si

te[0,1], ho(t) =In(1—¢) +In(1 + 1) —1In(a?® + %), donc ha(t) ~In(1 - £) quand ¢ vers
1 In(1/2n)

1 (les autres termes tendent vers des constantes). Donc, —h,(1—1/2n) ~ — =
n

In2n

— 0 par croissances comparées.

(g) SoitneN*.Ona

n-1 2

|fa) = Rype(1)] = 1‘[

1
p exp(nSy,q)-

2
o0& +ak 1+

Si a suffisamment petit, S, ¢ — J4 > 0. Et donc, | f (1) — Ry, (1)| — 400 aussi.

4 Interpolation en les nceuds de Tchebychev

15.

a) Soit n € N. Commencons par I'unicité. Si on a deux tels polynoémes T}, et T, alors pour

tout @ e R: (T, — T,,)(cosB) = cos(nf) —cos(nh) =0. Donc T, — T, a pour racine tout
réel de la forme cos@, c’est-a-dire tout réel de [-1,1]. Donc T, — T, = 0, ce qui conclut
la preuve d'unicité.

Pour I'existence, on passe en complexe. Soit n € N et soit 8 € R.

cos(n6) = Re(e'"?)

= Re((cos(@) + isin(@))")
_ = (n n—kpy ik oi ok
_Re(z (k) cos*(0)i" sin (6))

n

=20 ;v 170 i a2
2[) cos @) (=1)° sin“* (0)

n =20 ;v e 171 2yl
2[) cos @) (-1 (1-cos) (O)

|ni2]
Ainsi, en posant 1), = Z (—1)
/=0

Zﬁ)Xn 201 - x%% onabien:

VneN,VOeR, T,,(cosO) = cos(no).

Chaque polynéme X n=26(1-x2)% estde degré n et de coefficient dominant (- D¢ (développer
le deuxieme facteur par bindome de Newton). Donc T, est de degré au plus n et le
coefficient devant X" est donné par :

ln/2] P [n) 2 n
Y D x (-1 y _;20 or

=0



16.

17.

n
Or, on sait que, pour n = 1, la somme des coefficients binomiaux ( k) pour k € [0, n]

pair (ou impair) vaut 2”1 (résultat montré par calcul ou de facon combinatoire). Donc,
T, est de degré n et de coefficient dominant on-1 (sauf pour n =0, ou Ty = 1).

b) OnaTyp=1et T3 = X. Soit n € N, soit 8 € R. On calcule :

Tyao2(cosB) + Ty, (cosB) = cos((n+2)0) + cos(nb)
=cos((n+1)0) cos(0) —sin((n + 1)0) sin(O)
+cos((n+1)0) cos(—0)) —sin((n + 1)0) sin(—0)
=2cos((n+1)0)cos(0)

= (2XTn+1)(cos 0).
Ainsi, les valeurs de Ty, + T, et 2X T, sont les mémes en tout cos@, c’est-a-dire sur

[-1,1]. Donc Tyyo + T, =2X Ty41.
c) SoitfeR.Ona

T,(cosB) =0 < cos(nf) =0 < nb = g[n] — 0= Zl[n/n].
n

Rk+1rm

Ceci montre que, pour k € [0, n—1], les xj = cos ( ) sont des racines de Tj,. Ces

racines sont distinctes car cos est strictement décroissante sur [0, ] et que les angles

Ck+Dn .. ) .
—— sont dans [0, 7]. On a ainsi trouvé les n racines de T},. Donc,
n-1
2k+1n
T,=2""1 I1 (X—cos 4))
k=0 2n

Soit x € [-1,1]. On peut trouver 8 € R tel que x = cosf. Alors Tj(x) = cos(nf) et donc
|T,(x)| < 1. Ainsi, | Tylleo < 1.

Avec les mémes notations, on aura
|Th(x)|=1 < cos(nf) =+1 < nl =0[n] < 0=0(n/n].

Ainsi, T,(x) = £1 ssi x est égal a 'un des y; = cos((n—k)m/n), ou k € [0,n]. On utilise ces
notations pour se conformer a l'énoncé.

Par décroissance de cos sur [0, 7], on a alors :
—1=J/0<y1<"'<J/n=1-
Enfin, T, (yx) = cos(n x (n—k)n/n) = cos((n—k)n) = (-1)"k,

1 1
On suppose par I'absurde que || P|lo < e On a donc, pour tout x € [-1,1], [P(x)| < —.

2 2n-1
T, T,
Posons Q=P — znfl . Comme P et Zn—fl sont unitaires de degré n, Q € R,,_; [ X].
. Ty (Vi) (- .
Soit k € [0,7]. On a Q(yx) = P(yx) — znni/f =P(yr) + o1 Si n—k+1 est pair, on en

déduit que Q(yx) > 0 (car P(yy) > F)' De méme, si n— k+1 est impair, on a Q(yg) <0.



Ainsi, Q prend des valeurs alternativement strictement négatives et strictement positives
en les yr. Donc, par le théoreme des valeurs intermédiaires, Q a une racine sur chaque

intervalle [yk, yx+1], pour k € [0,n]. Comme Q est de degré < n—1 et qu’il a au moins n
Ty

racines, Q est nul. Donc P = F’

ce qui contredit '’hypothese || Pl < T

1
On conclut finalement que || Pl = T (et la preuve montre que le seul polynéme unitaire

T
de degré n réalisant I'égalité est zn—fl).



