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DM 12 - Interpolation polynomiale – Corrigé

1 Estimation fondamentale

1. Remarquons déjà que g s’annule en les xi quelle que soit la valeur de u, car pour tout i ∈
�0,n�, f (xi ) = L f ,x (xi ). On a g (u) = 0 ⇐⇒ f (u)−L f ,x (u)−Ku

n∏
i=0

(u−xi ) = 0. Une seule valeur

de Ku convient :

Ku = f (u)−L f ,x (u)∏n
i=0(u −xi )

.

2. La fonction g s’annule en n + 2 points distincts sur [a,b]. Par application du théorème de
Rolle entre deux points consécutifs d’annulation de g , on en déduit que g ′ a n + 1 points
d’annulation distincts sur [a,b]. Par une récurrence finie rapide, on montre que g (k) s’annule
n +2−k fois sur [a,b], pour k ∈ �0,n +1�. En particulier, g (n+1) s’annule sur [a,b].

3. L f ,x est un polynôme de degré n donc sa dérivée (n+1)-ème s’annule. La dérivée (n+1)-ème

de x 7→
n∏

i=0
(x − xi ) est (n +1)! car c’est une application polynomiale unitaire de degré n +1.

Donc, pour tout x ∈ [a,b] :

g (n+1)(x) = f (n+1)(x)−Ku(n +1)!.

En appliquant à x = cu et en utilisant l’expression trouvée pour Ku en question 1, on trouve
donc :

0 = f (n+1)(cu)− f (u)−L f ,x (u)∏n
i=0(u −xi )

× (n +1)!,

ce qui donne l’égalité souhaitée.

4. Soit x ∈ [a,b]. On a :

| f (x)−L f ,x (x)| =
∣∣∣ f (n+1)(x)

(n +1)!

n∏
i=0

(x −xi )
∣∣∣= | f (n+1)(x)|

(n +1!)
|Px (x)| ≤ ∥ f (n+1)∥∞

(n +1)!
∥Px∥∞.

Comme l’inégalité est vraie pour tout x ∈ [a,b], on peut passer à la borne supérieure à gauche
et ainsi obtenir :

∥ f −L f ,x∥∞ ≤ ∥ f (n+1)∥∞
(n +1)!

∥Px∥∞.

2 Fonctions à croissance raisonnable

5. Soit x ∈ [a,b]. On a Px (x) =
n∏

i=0
(x − xi ). Notons k ∈ �0,n −1� tel que xk ≤ x ≤ xk+1. Pour tout

i < k, on a : |x −xi | = x −xi ≤ (k − i +1)
b −a

n
et pour tout j > k +1, on a
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|x − x j | = x j − x ≤ ( j −k)
b −a

n
. De plus, le produit |(x − xk )(x − xk+1)| = (x − xk )(xk+1 − x) est

maximal (pour x ∈ [xk , xk+1] en le milieu x = xk +xk+1

2
et il vaut

(
b −a

2n

)2

. On en déduit que :

|Px (x)| ≤
k−1∏
i=0

(k − i +1)

(
b −a

n

)
×

(
b −a

2n

)2

×
n∏

j=k+2
( j −k)

b −a

n
= 1

4

(
b −a

n

)n+1

(k +1)!(n −k)!.

Il s’agit donc de montrer que (k+1)!(n−k)! ≤ n! si k ∈ �0,n−1�. Or
(k +1)!(n −k)!

n!
= n +1(n+1

k+1

) ≤ 1

(en dehors des termes extrêmes valant 1, les plus petits coefficients binomiaux

(
p

k

)
sont obtenus

pour k = 1 ou k = p −1).

6. Pour tout n ∈N, exp(n) = exp. Comme exp est croissante et positive surR, ∥exp(n) ∥∞ = exp(b)

est indépendante de n. Fixons r ≥ b −a. Par croissance comparée, on sait que
n!

r n tend vers

+∞ quand n tend vers +∞. En particulier, il existe une constante C > 0 telle que, pour tout

n ∈N, exp(b) ≤C
n!

r n . Ce qui conclut.

C est un majorant de la suite
exp(b)r n

n!
, qui tend vers 0.

7. a) Soit x ∈R. On a
1

α2 +x2 = 1

2αi

( 1

x −αi
− 1

x +αi

)
. Soit n ∈N. On a donc :

f (n)
α (x) = 1

2αi

( (−1)nn!

(x −αi )n+1 − (−1)nn!

(x +αi )n+1

)
.

On évalue en 0 : f (n)
α (0) = n!

2αi (αi )n+1 (−1+ (−1)n+1). Après simplifications, on trouve

que

f (n)
α (0) = 0 si n est impair et f (n)

α (0) = n!

αn+2 (−1)n/2 si n est pair.

b) On a donc, pour tout n ∈ N, ∥ f (2n)
α ∥∞ ≥ | f (2n)

α (0)| = (2n)!

α2n+2 . Si fα a une croissance

raisonnable sur [−1,1], on trouve donc un r ≥ 2 et un C > 0 tels que ∀n ∈N :

(2n)!

α2n ≤C
(2n)!

r 2n .

Aisni, 22n =O(r 2n) =O(α2n). Et donc α doit être < 2.

8. Soit C > 0, soit r ≥ b −a tels que ∀n ∈N,∥ f (n)∥∞ ≤C
n!

r n . Par les questions 4 et 5, on a alors :

∥ f −L f ,x∥∞ ≤ C

(n +1)!
× (n +1)!

r n+1 × n!

4

(
b −a

n

)n+1

.

Comme r ≥ b −a, on a :

∥ f −L f ,x∥∞ ≤ C

4

n!

nn+1 ≤C
n!

nn .

9. Par croissance comparée, on sait que le membre de droite dans l’inégalité précédente tend
vers 0, quand n tend vers +∞. Donc si f a une croissance raisonnable sur [a,b], l’écart
∥ f −L f ,x∥∞ tend vers 0, quand n tend vers +∞.
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3 Phénomène de Runge

Dans cette partie, on montre que les fonctions fα introduites dans la partie précédente ne sont pas
bien interpolées par des polynômes, ce que la question 10 suggère.
C’est le phénomène de Runge.

On modifie les points d’interpolation utilisés de la façon suivante. Pour tout n ∈ N∗ et tout

k ∈ �0,n − 1�, on note ak,n = 2k +1

2n
. Les 2n points ±ak,n permettent de définir un polynôme

interpolateur Rn,α : c’est l’unique polynôme de R2n−1[X ] tel que

∀k ∈ �0,n −1�,Rn,α(±ak,n) = fα(±ak,n).

10. Le polynôme Q = Rn,α(−X ) est de même degré que Rn,α et il vérife ∀k ∈ �0,n−1�,Q(±ak,n) =
Rn,α(∓ak,n) = fα(∓ak,n) = fα(ak,n) car fα est une fonction paire.
Par unicité dans l’interpolation de Lagrange, on a donc égalité Q =Q(−X ) ; donc, pour tout
x ∈R, Q(x) =Q(−x).
L’égalité Rn,α = Rn,α(−X ) montre que Rn,α est une combinaison linéaire de monômes de
degré pair ; comme il est de degré ≤ 2n −1, il est en fait de degré ≤ 2n −2.

On définit le polynôme Qn,α = 1− (X 2 +α2)Rn,α.

11. Pour tout k ∈ �0,n −1�, on a

Qn,α(±ak,n) = 1− (a2
k,n +α2)Rn,α(±ak,n) = 1−

a2
k,n +α2

a2
k,n +α2

= 0.

Donc, tous les ±ak,n sont racines de Qn,α. Donc,
n−1∏
k=0

(X −ak,n)×
n−1∏
k=0

(X +ak,n) =
n−1∏
k=0

(X 2−a2
k,n)

divise Q. Comme Rn,α est de degré ≤ 2n −2, Qn,α est de degré ≤ 2n ; comme on l’a factorisé
par un polynôme de degré 2n, le facteur restant est une constante, qu’on appelle λ.

12. On a Qn,α(αi ) = 1− ((αi )2 +α2)Rn,α(αi ) = 1. D’autre part,

Qn,α(αi ) =λ
n−1∏
k=0

(
(αi )2 −a2

k,n

)= (−1)nλ
n−1∏
k=0

(α2 +a2
k,n).

Donc, λ= (−1)n
n−1∏
k=0

1

α2 +a2
k,n

.

13. Soit x ∈ [−1,1]. On a :

fα(x)−Rn,α(x) = 1

α2 +x2 − 1−Qn,α(x)

α2 +x2 = Qn,α(x)

α2 +x2 .

On remplace par l’expression trouvée ci-dessous pour Qn,α pour conclure.

14. (a) Comme
1− t 2

α2 + t 2 est strictement positive sur [0,1[, la fonction hα y est continue par

opérations élémentaires.
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De plus, pour tout t ∈ [0,1[,
1− t 2

α2 + t 2 = 1+ α2

α2 + t 2 . Le dénominateur est croissant avec t ,

donc t 7→ 1− t 2

α2 + t 2 est une fonction décroissante sur [0,1[, donc hα aussi par croissance

de ln.
On peut évidemment dériver. Mais dans ce cas, préférer dériver la fonction dans le ln
plutôt que tout hα, ce qui ne change rien et allège le calcul.

(b) Pour t ∈]0,1[, hα(t ) = ln(1− t )+ ln(1+ t )− ln(α2+ t 2). Donc, en intégrant entre ε et 1−ε
et par linéarité :

Jα,ε =
∫ 1−ε

ε
ln(1− t )d t +

∫ 1−ε

ε
ln(1+ t )d t −

∫ 1−ε

ε
ln(α2 + t 2)d t .

On conclut après les changements de variable u = 1 − t dans la première intégrale
(l’inversion des bornes est compensée par le fait que d t = −du) et u = 1+ t dans la
deuxième.

(c) Notons I1, I2 et I3 les trois intégrales ci-dessus dans l’expression de Jα,ε.

• I1 vaut
[
x ln x −x

]1−ε
ε . Par croissance comparée, ceci tend vers −1 quand ε→ 0.

• I2 vaut
[
x ln x −x

]1−ε
ε . Ceci tend vers 2ln2−2+1 = 2ln2−1 quand ε→ 0.

• On calcule I3 par intégration par parties. On a :

I3 =
[
t ln(α2 + t 2)

]1−ε
ε −

∫ 1−ε

ε

2t 2

α2 + t 2

= [
t ln(α2 + t 2)

]1−ε
ε −2(1−2ε)+

∫ 1−ε

ε

α2

α2 + t 2

= [
t ln(α2 + t 2)

]1−ε
ε −2(1−2ε)−2α

[
arctan

(
t

α

)]1−ε
ε

Ceci tend vers ln(α2 +1)−2−2αarctan

(
1

α

)
quand ε→ 0.

Donc, Jα,ε = I1 + I2 − I3 converge vers 2ln2− ln(α2 + 1)− 2αarctan

(
1

α

)
quand ε→ 0.

C’est donc la valeur de Jα.

(d) Comme arctan a pour limite π/2 en +∞, on constate par opérations élémentaires que
Jα→ 2ln2 quandα→ 0. Comme 2ln2, Jα > 0 pourα suffisamment petit, par localisation
asymptotique.

(e) On a Jα,1/2n =
∫ an−1,n

a0,n

hα(t )d t . Par relation de Chasles :

Jα,1/2n =
n−2∑
k=0

∫ ak+1,n

ak,n

hα(t )d t .

Par décroissance de hα et propriété de croissance de l’intégrale ;

Sn,α−hα(1/2n) = 1

n

n−2∑
k=0

hα(ak+1,n) ≤ Jα,1/2n ≤ 1

n

n−2∑
k=0

hα(ak,n) = Sn,α− 1

n
hα(1−1/2n).

Les deux inégalités ainsi obtenues donnent la minoration et la majoration souhaitée de
Sn,α.
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(f) Dans l’encadrement précédent, on a Jα,1/2n → Jα quand n → +∞. Il s’agit donc de

montrer que
1

n
hα(1/2n) et

1

n
hα(1−1/2n) tendent aussi vers 0, pour appliquer le théorème

d’encadrement.

Pas de difficultés pour
1

n
hα(1/2n) car hα(1/2n) → hα(0) par continuité.

Pour hα(1− 1/2n), il faut faire attention que hα n’est pas définie en 1. Cependant, si
t ∈ [0,1[, hα(t ) = ln(1− t )+ ln(1+ t )− ln(α2 + t 2), donc hα(t ) ∼ ln(1− t ) quand t vers

1 (les autres termes tendent vers des constantes). Donc,
1

n
hα(1−1/2n) ∼ ln(1/2n)

n
=

− ln2n

n
→ 0 par croissances comparées.

(g) Soit n ∈N∗. On a

| fα(1)−Rn,α(1)| = 1

1+α2

n−1∏
k=0

1−a2
k,n

α2 +a2
k,n

= 1

1+α2 exp(nSn,α).

Si α suffisamment petit, Sn,α→ Jα > 0. Et donc, | fα(1)−Rn,α(1)|→+∞ aussi.

4 Interpolation en les nœuds de Tchebychev

15. a) Soit n ∈N. Commençons par l’unicité. Si on a deux tels polynômes Tn et T̃n , alors pour
tout θ ∈ R : (Tn − T̃n)(cosθ) = cos(nθ)− cos(nθ) = 0. Donc Tn − T̃n a pour racine tout
réel de la forme cosθ, c’est-à-dire tout réel de [−1,1]. Donc Tn − T̃n = 0, ce qui conclut
la preuve d’unicité.

Pour l’existence, on passe en complexe. Soit n ∈N et soit θ ∈R.

cos(nθ) = Re(e i nθ)

= Re
((

cos(θ)+ i sin(θ)
)n

)
= Re

( n∑
k=0

(
n

k

)
cosn−k (θ)i k sink (θ)

)
=

⌊n/2⌋∑
ℓ=0

(
n

2ℓ

)
cosn−2ℓ(θ)(−1)ℓ sin2ℓ(θ)

cos(nθ) =
⌊n/2⌋∑
ℓ=0

(
n

2ℓ

)
cosn−2ℓ(θ)(−1)ℓ(1−cos2)ℓ(θ)

Ainsi, en posant Tn =
⌊n/2⌋∑
ℓ=0

(−1)ℓ
(

n

2ℓ

)
X n−2ℓ(1−X 2)ℓ, on a bien :

∀n ∈N,∀θ ∈R,Tn(cosθ) = cos(nθ).

Chaque polynôme X n−2ℓ(1−X 2)ℓ est de degré n et de coefficient dominant (−1)ℓ (développer
le deuxième facteur par binôme de Newton). Donc Tn est de degré au plus n et le
coefficient devant X n est donné par :

⌊n/2⌋∑
ℓ=0

(−1)ℓ× (−1)ℓ
(

n

2ℓ

)
=

⌊n/2⌋∑
ℓ=0

(
n

2ℓ

)
.
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Or, on sait que, pour n ≥ 1, la somme des coefficients binomiaux

(
n

k

)
pour k ∈ �0,n�

pair (ou impair) vaut 2n−1 (résultat montré par calcul ou de façon combinatoire). Donc,
Tn est de degré n et de coefficient dominant 2n−1 (sauf pour n = 0, où T0 = 1).

b) On a T0 = 1 et T1 = X . Soit n ∈N, soit θ ∈R. On calcule :

Tn+2(cosθ)+Tn(cosθ) = cos((n +2)θ)+cos(nθ)

= cos((n +1)θ)cos(θ)− sin((n +1)θ)sin(θ)

+cos((n +1)θ)cos(−θ))− sin((n +1)θ)sin(−θ)

= 2cos((n +1)θ)cos(θ)

=
(
2X Tn+1

)
(cosθ).

Ainsi, les valeurs de Tn+2 +Tn et 2X Tn+1 sont les mêmes en tout cosθ, c’est-à-dire sur
[−1,1]. Donc Tn+2 +Tn = 2X Tn+1.

c) Soit θ ∈R. On a

Tn(cosθ) = 0 ⇐⇒ cos(nθ) = 0 ⇐⇒ nθ ≡ π

2
[π] ⇐⇒ θ ≡ π

2n
[π/n].

Ceci montre que, pour k ∈ �0,n−1�, les xk = cos
( (2k +1)π

2n

)
sont des racines de Tn . Ces

racines sont distinctes car cos est strictement décroissante sur [0,π] et que les angles
(2k +1)π

2n
sont dans [0,π]. On a ainsi trouvé les n racines de Tn . Donc,

Tn = 2n−1
n−1∏
k=0

(
X −cos

(
(2k +1)π

2n

))
.

16. Soit x ∈ [−1,1]. On peut trouver θ ∈ R tel que x = cosθ. Alors Tn(x) = cos(nθ) et donc
|Tn(x)| ≤ 1. Ainsi, ∥Tn∥∞ ≤ 1.

Avec les mêmes notations, on aura

|Tn(x)| = 1 ⇐⇒ cos(nθ) =±1 ⇐⇒ nθ ≡ 0[π] ⇐⇒ θ ≡ 0[π/n].

Ainsi, Tn(x) = ±1 ssi x est égal à l’un des yk = cos((n −k)π/n), où k ∈ �0,n�. On utilise ces
notations pour se conformer à l’énoncé.

Par décroissance de cos sur [0,π], on a alors :

−1 = y0 < y1 < ·· · < yn = 1.

Enfin, Tn(yk ) = cos
(
n × (n −k)π/n

)= cos
(
(n −k)π

)= (−1)n−k .

17. On suppose par l’absurde que ∥P∥∞ < 1

2n−1 . On a donc, pour tout x ∈ [−1,1], |P (x)| < 1

2n−1 .

Posons Q = P − Tn

2n−1 . Comme P et
Tn

2n−1 sont unitaires de degré n, Q ∈Rn−1[X ].

Soit k ∈ �0,n�. On a Q(yk ) = P (yk )− Tn(yk )

2n−1 = P (yk )+ (−1)n−k+1

2n−1 . Si n −k +1 est pair, on en

déduit que Q(yk ) > 0 (car P (yk ) > −1

2n−1 ). De même, si n −k +1 est impair, on a Q(yk ) < 0.
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Ainsi, Q prend des valeurs alternativement strictement négatives et strictement positives
en les yk . Donc, par le théorème des valeurs intermédiaires, Q a une racine sur chaque
intervalle [yk , yk+1], pour k ∈ �0,n�. Comme Q est de degré ≤ n − 1 et qu’il a au moins n

racines, Q est nul. Donc P = Tn

2n−1 , ce qui contredit l’hypothèse ∥P∥∞ < 1

2n−1 .

On conclut finalement que ∥P∥∞ ≥ 1

2n−1 (et la preuve montre que le seul polynôme unitaire

de degré n réalisant l’égalité est
Tn

2n−1 ).
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