
MPSI 3 Feuille d’exercices 2025–2026

Algèbre linéaire, dimension finie

1 Calculs en dimension finie

EXERCICE 1. ♣ – ### Calculs dans R4

Soient F,G les sous-espaces vectoriels de R4 définis par :

F = {
(x, y, z, t ) | x + y + z = 0 et 2x + y + z − t = 0

}
et G = Vect

{
(1,−2,1,1), (1,2,−3,1), (5,−3,−2,5)

}
.

1. Calculer la dimension de F .

2. Montrer que G ⊂ F , puis que G = F .

3. Déterminer un supplémentaire de F dans R4.

EXERCICE 2. ### Un endomorphisme de R3

Soit E =R3. On note B = (e1,e2,e3) la base canonique de E et u l’endomorphisme de R3 défini par
la donnée des images des vecteurs de la base :

u(e1) =−2e1 +2e3 ,u(e2) = 3e2 ,u(e3) =−4e1 +4e3.

1. Déterminer une base de Ker(u). L’endomorphisme u est-il injectif ? Est-il surjectif ?

2. Déterminer une base de Im(u). Quel est le rang de u ?

3. Montrer que E = Ker(u)⊕ Im(u).

EXERCICE 3. ### Une application linéaire de R3 dans R4

On considère l’application linéaire f de R3 dans R4 définie par

f (x, y, z) = (x + z, y −x, z + y, x + y +2z).

1. Déterminer une base de Im( f ).

2. Déterminer une base de Ker( f ).

3. L’application f est-elle injective ? Est-elle surjective?

EXERCICE 4. G### Un endomorphisme de R3[X ]
On définit sur E =R3[X ], l’application u : P 7→ P + (1−X )P ′.

1. Montrer que u est un endomorphisme de E .

2. Déterminer une base de Ker(u).

3. Déterminer une base de Im(u).

4. Montrer que Ker(u) et Im(u) sont deux sous-espaces vectoriels supplémentaires de E .
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2 Sous-espaces en dimension finie

EXERCICE 5. ♣/♦ –  ## Rang d’une famille augmentée
Soient F et G deux sous-espaces vectoriels d’un espace vectoriel E de dimension finie.

1. Montrer que dim(F +G) ≤ dimF +dimG et préciser le cas d’égalité.

2. On considère (x1, . . . , xn) une famille de E . Montrer que, pour tout p ∈ �0,n� :

rg(x1, . . . , xn) ≤ rg(x1, . . . , xp )+n −p.

EXERCICE 6.  ## Suites récurrentes

1. Soit p ∈N∗ et a1, . . . , ap ∈R. Soit E l’ensemble des suites (un)n∈N réelles telles que

∀n ∈N,un+p = a1un+p−1 +·· ·+ap un .

Montrer que E est un sous-espace vectoriel deRN de dimension finie et préciser sa dimension.

2. Soit (a,b) ∈R2. Donner une base de l’espace des suites vérifiant :

∀n ∈N,un+2 = aun+1 +bun .

EXERCICE 7. ♣ –  G## Supplémentaire commun à deux espaces
Soient E un espace vectoriel de dimension finie n, soient F , G deux sous-espaces vectoriels de E de
même dimension p. Montrer que F et G ont un supplementaire commun : il existe un sous-espace
H de E tel que F ⊕H =G ⊕H = E .

EXERCICE 8. ♣/♦ –  G## Sous-espaces de grande dimension
Soient F1, . . . ,Fp des sous-espaces vectoriels d’un espace vectoriel E de dimension n.

On suppose que
p∑

i=1
dimFi > (p −1)n. Montrer que

p⋂
i=1

Fi ̸=
{
0
}
.

EXERCICE 9. ♣ –   # Matrices magiques
Une matrice M ∈ Mn(R) est dite magique s’il existe un nombre réel m tel que la somme des
coefficients de M présents sur chaque ligne et sur chaque colonne vaut m. Montrer que l’ensemble
des matrices magiques est un sous-espace vectoriel de Mn(R), et déterminer sa dimension.

EXERCICE 10.    Équivalence sur les familles de sous-espaces
Soit E un R-espace vectoriel de dimension finie. On dit que deux r -uplets (F1, . . . ,Fr ) et (F ′

1, . . . ,F ′
r )

de sous-espaces vectoriels de E sont équivalents s’il existe un automorphisme φ ∈ GL(E) tel que
∀i ∈ �1,r �,φ(Fi ) = F ′

i .

1. Classer les sous-espaces vectoriels de E à équivalence près.

2. Classer les couples de sous-espaces vectoriels de E à équivalence près.

On suppose désormais pour simplifier que E est de dimension paire et on note r = 1

2
dimE .
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3. Montrer que les triplets de sous-espaces vectoriels (F1,F2,F3) tels que

∀i ∈ �1,3�,dimFi = r et ∀i ̸= j ∈ �1,3�,Fi ∩F j =
{
0E

}
sont tous équivalents entre eux.

4. Montrer qu’il existe une infinité de quadruplets de sous-espaces vectoriels (F1,F2,F3,F4)
deux à deux non équivalents tels que

∀i ∈ �1,4�,dimFi = r et ∀i ̸= j ∈ �1,4�,Fi ∩F j =
{
0E

}
.

3 Applications linéaires en dimension finie

EXERCICE 11.  ## E = Keru ⊕ Imu
Soit E un espace vectoriel de dimension finie, soit u ∈L (E).
Montrer l’équivalence entre les assertions suivantes :

a) Keru = Keru2 ; b) Imu = Imu2 ; c) E = Keru ⊕ Imu.

EXERCICE 12. ♦ –  ## Endomorphisme localement nilpotent
Un endomorphisme f de L (E) est dit localement nilpotent si : ∀x ∈ E , ∃k ∈N, f k (x) = 0.

1. Montrer que si E est de dimension finie, un endomorphisme localement nilpotent de E est
nilpotent.

2. Montrer que le résultat est faux en général si on ne suppose plus E de dimension finie.

EXERCICE 13. ♣/♦ –  ## Décomposition en somme d’endomorphismes de rang 1
Soit E un espace vectoriel de dimension finie. Montrer qu’un endomorphisme u de E de rang r est
somme de r endomorphismes de rang 1.

EXERCICE 14.  ## Un endomorphisme de L (E)
Soit E un espace vectoriel de dimension finie, soient u, v ∈L (E). On définitφ de L (E) dans L (E),
par φ : f 7→ u ◦ f ◦ v . Montrer que φ ∈L

(
L (E)

)
et déterminer à quelle condition φ= 0.

EXERCICE 15. ♣ –  G## Noyaux et images itérés
Soit E un espace vectoriel de dimension finie et u un endomorphisme de E .

1. Montrer que la suite de sous-espaces vectoriels (Keruk )k∈N (resp. (Imuk )k∈N) est croissante
(resp. décroissante) pour l’inclusion.

2. Montrer qu’il existe p ∈N tel que pour tout k ≥ p, Keruk = Kerup et Imuk = Imup .

3. Montrer que, pour cet entier p, E = Kerup ⊕ Imup .
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EXERCICE 16.  G## Inclusion de noyaux
Soient E , F et G trois espaces vectoriels de dimension finie, u ∈L (E ,F ), v ∈L (E ,G).
Le but de l’exercice est de démontrer que Keru ⊂ Ker v ⇐⇒ (∃w ∈L (F,G) : v = w ◦u).

1. On suppose qu’il existe w ∈L (F,G) telle que v = w ◦u. Montrer que Keru ⊂ Ker v .

2. En considérant un supplémentaire S de Keru dans E et un supplémentaire T de Imu dans
F , construire une application linéaire w ∈L (F,G) telle que v = w ◦u.

EXERCICE 17. ♣ –  G## Indice de nilpotence
Soit E un espace vectoriel de dimension finie n. Soit u un endomorphisme nilpotent de E : il existe
p ∈N∗ tel que up = 0. On veut montrer que un = 0.

1. Première méthode. Pour tout k ∈N, on définit Nk = Ker(uk ).

(a) Montrer que la suite (Nk )k∈N est croissante pour l’inclusion.

(b) Montrer que si Nk0 = Nk0+1, alors la suite (Nk ) stationne en Nk0 .

(c) En déduire que Nk0 = E et conclure.

2. Deuxième méthode. On note p le plus petit entier tel que up = 0.

(a) Montrer que si x ∉ Kerup−1, alors la famille
(
x,u(x), . . . ,up−1(x)

)
est libre.

(b) Conclure.

EXERCICE 18.  G## Reste dans la division euclidienne
Soit E =Rn[X ] et soient A,B deux polynômes de degré n +1. On définit l’application φ : E → E qui
à un polynôme P associe le reste de AP dans la division euclidienne par B .

1. Montrer que φ est linéaire.

2. Montrer que φ est un automorphisme ssi A et B sont premiers entre eux.

EXERCICE 19. ♣ –  G## Suite exacte d’espaces vectoriels
Soient E0, . . . ,En des espaces vectoriels de dimension finie respectivement égale à a0, . . . , an . On
suppose qu’il existe n applications lineaires f0, . . . , fn−1 telles que, pour chaque k ∈ {0, . . . ,n −1}, fk

est une application lineaire de Ek dans Ek+1 et

a) f0 est injective ;

b) Ker( fk ) = Im( fk−1) pour tout k ∈ �1,n −1� ;

c) fn−1 est surjective.

Montrer que
n∑

k=0
(−1)k ak = 0.
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EXERCICE 20. ♣/♦ –  G## Interpolation de Hermite
Soient x1, . . . , xn des réels deux à deux distincts ; soient y1, . . . , yn et z1, . . . , zn des réels.

1. Montrer qu’il existe un unique polynôme P ∈R2n−1[X ] tel que

∀i ∈ �1,n�,P (xi ) = yi et P ′(xi ) = zi .

2. Déterminer une formule explicite pour ce polynôme.

EXERCICE 21.  G## Somme d’images, somme de noyaux
Soit E un espace vectoriel de dimension finie, soient u, v ∈L (E). On suppose que

E = Imu + Im v = Keru +Ker v.

Montrer que les deux sommes sont directes.

EXERCICE 22. ♦ –  G## Endomorphismes à noyau contraint
Soient E et F deux espaces vectoriels de dimension finie, soit G un sous-espace vectoriel de E . On
définit A = {

u ∈L (E ,F ) |G ⊂ Ker(u)
}
.

Montrer que A est un sous-espace vectoriel de L (E ,F ) et déterminer sa dimension.

EXERCICE 23. ♣ –  G## Endomorphisme à noyau et image prescrits
Soit E un espace vectoriel de dimension finie. Soient F et G deux sous-espaces vectoriels de E .
Donner une CNS sur (F,G) pour qu’il existe u ∈L (E) tel que Keru = F et Imu =G .

EXERCICE 24.   # Commutant d’un projecteur
Soit p un projecteur de rang r dans un espace vectoriel E de dimension finie n. On considère le
commutant de p : C (p) = {u ∈L (E) | u ◦p = p ◦u}.
Montrer que C (p) est un sous-espace vectoriel et un sous-anneau de L (E). Déterminer sa dimension.

EXERCICE 25. ♣ –   # Dimensions de sous-espaces d’endomorphismes
Soit E un espace vectoriel de dimension n, soit u ∈L (E) de rang r . Déterminer la dimension des
espaces vectoriels suivants :

1. A = {
v ∈L (E) | v ◦u = 0

}
2. B = {

v ∈L (E) | u ◦ v = 0
} 3. C = A∩B

4. D = {
v ∈L (E) | u ◦ v ◦u = 0

}
.

EXERCICE 26. ♣ –   # Endomorphisme cyclique
Soit E un espace vectoriel de dimension n, soit u ∈L (E).
On suppose qu’il existe x0 ∈ E tel que

(
x0,u(x0), . . . ,un−1(x0)

)
est une base de E .

Montrer que le commutant de u est égal àK[u] = {
P (u),P ∈K[X ]

}
.

EXERCICE 27.   # f g − g f =αg
Soient E un espace vectoriel de dimension finie, f , g ∈L (E) et α ∈K tels que f g − g f =αg .

1. Déterminer f g k − g k f , pour tout k ∈N∗.

2. En déduire que g est nilpotente.
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EXERCICE 28. ♣ –   G# Inégalité de Frobenius
Soit u, v et w trois endomorphismes d’un espace vectoriel de dimension finie E . Montrer

rg(uv)+ rg(v w) ≤ rg(v)+ rg(uv w).

EXERCICE 29. ♣/♦ –   G# Lemme des noyaux
Soit E un espace vectoriel de dimension finie. Soit u ∈ L (E), soient P,Q ∈K[X ]. On suppose que
P ∧Q = 1 et que (PQ)(u) = 0. Montrer que E = Ker

(
P (u)

)⊕Ker
(
Q(u)

)
.

4 Dualité en dimension finie

EXERCICE 30. ♣ –  G## Formes linéaires de Rn[X ]
Dans E =Rn[X ], on considère les formes linéaires φk ∈ E∗, définies par ∀P ∈ E ,φk (P ) = P (k)(0).
Montrer que la famille (φk )n

k=0 est une base de E∗.

EXERCICE 31. ♣/♦ –  G## Base du dual
Soit E un espace vectoriel de dimension n. Soient φ1, . . . ,φn des formes linéaires sur E .

Montrer que (φ1, . . . ,φn) est une base de E∗ ssi
n⋂

i=1
Kerφi =

{
0
}
.

EXERCICE 32.  G## Hyperplan évitant une partie dénombrable
Soit D une partie dénombrable de Rn \

{
0
}
.

Montrer qu’il existe un hyperplan H de Rn tel que H ∩D =;.

EXERCICE 33.   # Un résultat de dualité
Soit E un espace vectoriel de dimension finie et f1, . . . , fn ∈ E∗. Soit f ∈ E∗ tel que

∀x ∈ E ,
(

f1(x) = f2(x) = ·· · = fn(x) = 0
) =⇒ f (x) = 0.

Montrer que f est combinaison linéaire des f1, . . . , fn .

EXERCICE 34.    Recouvrement dénombrable d’un espace par des hyperplans
On admet que R n’est pas dénombrable.

1. SoitK un corps quelconque et E unK-espace vectoriel de dimension infinie.
Montrer qu’il existe une suite (Hn)n∈N d’hyperplans de E telle que E = ⋃

n∈N
Hn .

2. Soit E un R-espace vectoriel de dimension finie.
Montrer qu’il n’existe pas de suite (Hn)n∈N d’hyperplans de E telle que E = ⋃

n∈N
Hn .

5 Autres exercices

EXERCICE 35. ♣ –  G## Rang d’une famille de dérivées
Soit ( f1, . . . , fn) une famille libre de fonctions dérivables R→R. Montrer que rg( f ′

1, . . . , f ′
n) ≥ n −1.
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EXERCICE 36. ♣/♦ –  G## Polynômes de Hilbert

Pour tout k dansN, on pose Pk = X (X −1) . . . (X −k +1)

k !
.

1. Montrer que la famille (Pk )k∈N est une base de R[X ].

2. Montrer que, pour tout m ∈Z et tout k ∈N, Pk (m) ∈Z.

3. Déterminer l’ensemble des polynômes deR[X ] prenant des valeurs entières en chaque entier.

EXERCICE 37. ♦ –  G## Cardinal d’un corps fini
Montrer que le cardinal d’un corps fini est de la forme pn , où p ∈P et n ∈N∗.

EXERCICE 38. ♣ –   # Idéaux à droite de L (E)
Soit E un espace vectoriel de dimension n. Si F est un sous-espace vectoriel de E , on pose

IF = {
f ∈L (E) | Im f ⊂ F

}
.

1. Montrer que IF est un idéal à droite1 de L (E).
Calculer sa dimension en tant que sous-espace vectoriel de L (E).

2. Montrer réciproquement que tout idéal à droite de L (E) est de la forme IF , pour un sous-
espace vectoriel F de E .

3. Montrer que si I est un idéal à droite de L (E), il existe un projecteur p ∈I tel que

I = {
p ◦ f , f ∈L (E)

}
.

EXERCICE 39. ♣ –   G# Dénombrement sur un corps fini
Soit E un espace vectoriel de dimension n, sur un corps fini F de cardinal q .

1. Déterminer les cardinaux de E et L (E).

2. Déterminer le nombre de bases de E . En déduire |GL(E)|.
3. Déterminer le nombre de sous-espaces vectoriels de E de dimension p, où p ∈ �1,n�.

4. Déterminer le nombre d’endomorphismes de E de rang r , où r ∈ �1,n −1�.

1Dans un anneau A non commutatif, un idéal à droite est une partie I de A qui est un sous-groupe additif de A et
qui vérifie : ∀a ∈ A,∀x ∈I , xa ∈I .
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Indications

Exercice 5. Pour 1., considérer la réunion d’une base de F et d’une base de G .

Exercice 8. Déterminer une inégalité entre dim
k⋂

i=1
Fi et dim

k+1⋂
i=1

, pour k ∈ �0, p −1�.

Exercice 12. Pour 1., une application linéaire est entièrement déterminée par son image sur une
partie génératrice. Pour 2., considérer E =R[X ].

Exercice 13. Écrire l’image de u comme somme directe de r droites.

Exercice 20. Pour 1., convertir le problème en une question de surjectivité d’une application
linéaire. Pour 2., procéder comme avec les polynômes de Lagrange.

Exercice 22. Une application linéaire u ∈ L (E ,F ) est connue sur G (car elle y est nulle). Elle est
donc déterminée par son comportement sur un supplémentaire de G .

Exercice 29. Commencer par traduire l’hypothèse P ∧Q = 1, pour en déduire une relation entre les
endomorphismes P (u) et Q(u).

Exercice 31. Un vecteur x est nul ssi ℓ(x) = 0, pour toute forme linéaire ℓ. (pourquoi ?)

Exercice 36. Pour 3., écrire un tel polynôme dans la base de Hilbert.

Exercice 37. Montrer que tout corps fini contient un sous-corps isomorphe à un Fp , et qu’il peut
être vu comme un espace vectoriel sur ce sous-corps.
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