MPSI 3 Feuille d’exercices 2025-2026

Algebre linéaire, dimension finie

1 Calculs en dimension finie

EXERCICE 1. & — OOO Calculs dans R*
Soient F, G les sous-espaces vectoriels de R* définis par :

F={(x,y,2,t) | x+y+z=0et2x+y+z—t=0} et G=Vect{(1,-2,1,1),(1,2,-3,1),(5,-3,-2,5)}.
1. Calculer la dimension de F.
2. Montrer que G c F, puis que G = F.

3. Déterminer un supplémentaire de F dans R?.

EXERCICE 2. OO0 Un endomorphisme de R®
Soit E=R3. On note % = (e, e,, e3) la base canonique de E et u '’endomorphisme de R défini par
la donnée des images des vecteurs de la base :

u(e;) = —2e1 +2e3,uler) =3ey, u(es) = —4e; +4es.
1. Déterminer une base de Ker(u). Lendomorphisme u est-il injectif ? Est-il surjectif ?
2. Déterminer une base de Im(u). Quel est le rang de u ?

3. Montrer que E = Ker(u) © Im(u).

EXERCICE 3. OO0 Une application linéaire deR® dans R*
On considere 'application linéaire f de R® dans R* définie par

f, 3,2 =x+z,y—x,2+),x+y+2z).
1. Déterminer une base de Im(f).
2. Déterminer une base de Ker(f).

3. Lapplication f est-elle injective ? Est-elle surjective?

EXERCICE 4. ©OO Un endomorphisme de R3[X]
On définit sur E = R3[X], 'application u: P— P+ (1 — X)P'.

1. Montrer que u est un endomorphisme de E.
2. Déterminer une base de Ker(u).
3. Déterminer une base de Im(u).

4. Montrer que Ker(u) et Im(u) sont deux sous-espaces vectoriels supplémentaires de E.



2 Sous-espaces en dimension finie

EXERCICE 5. &/ — @ OO Rang d’une famille augmentée
Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie.

1. Montrer que dim(F + G) < dim F +dim G et préciser le cas d’égalité.

2. On considere (x3, ..., X;) une famille de E. Montrer que, pour tout p € [0, n] :

rg(xy,..., Xp) <18(X1,...,Xp) + N —Pp.

EXERCICE 6. @ OO Suites récurrentes
1. SoitpeN* etay,..., ap € R. Soit E I'ensemble des suites (u,) zen réelles telles que
VrReEN, Upip=aUpip-1+--+ aplp.
Montrer que E est un sous-espace vectoriel de R de dimension finie et préciser sa dimension.

2. Soit (a,b) € R%. Donner une base de I'espace des suites vérifiant :

VneN, Uy = a1+ buy,.

EXERCICE 7. & — @O0 Supplémentaire commun a deux espaces

Soient E un espace vectoriel de dimension finie 7, soient F, G deux sous-espaces vectoriels de E de
méme dimension p. Montrer que F et G ont un supplementaire commun : il existe un sous-espace
HdeEtelque Foe H=Ge H=E.

EXERCICE 8. &/ — @©O Sous-espaces de grande dimension
Soient Fy, ..., F), des sous-espaces vectoriels d'un espace vectoriel E de dimension 7.

p p
On suppose que Y dimF; > (p — 1)n. Montrer que [ | F; # {0}.
i=1 i=1

EXERCICE 9. & — @@(O Martrices magiques

Une matrice M € #,(R) est dite magique s’il existe un nombre réel m tel que la somme des
coefficients de M présents sur chaque ligne et sur chaque colonne vaut m. Montrer que ’ensemble
des matrices magiques est un sous-espace vectoriel de .4, (R), et déterminer sa dimension.

EXERCICE 10. @@@® Equivalence sur les familles de sous-espaces

Soit E un R-espace vectoriel de dimension finie. On dit que deux r-uplets (Fj,..., F;) et (F{, ey F;)
de sous-espaces vectoriels de E sont équivalents s'il existe un automorphisme ¢ € GL(E) tel que
Vie[l,r],¢(F) =F.

1. Classer les sous-espaces vectoriels de E a équivalence prés.

2. Classer les couples de sous-espaces vectoriels de E a équivalence pres.

1
On suppose désormais pour simplifier que E est de dimension paire et on note r = > dimE.



3. Montrer que les triplets de sous-espaces vectoriels (F, F», F3) tels que
Vie[1,3],dimF; =retVi#je[1,3],F;nFj={0g}
sont tous équivalents entre eux.

4. Montrer qu’il existe une infinité de quadruplets de sous-espaces vectoriels (Fy, Fo, F3, Fy)
deux a deux non équivalents tels que

Vie[1,4],dimF; =retVi# je[1,4], F;nFj={0g}.

3 Applications linéaires en dimension finie

EXERCICE11l. @ OO E=Keru®Imu
Soit E un espace vectoriel de dimension finie, soit u € £ (E).
Montrer I’équivalence entre les assertions suivantes :

a) Keru=Keru2; b) Imu=Imu2; c) E=KerueImu.

EXERCICE 12. { — @O0 Endomorphisme localement nilpotent
Un endomorphisme f de £ (E) est dit localement nilpotentsi: Vxe E, 3keN, f k) =o0.

1. Montrer que si E est de dimension finie, un endomorphisme localement nilpotent de E est
nilpotent.

2. Montrer que le résultat est faux en général si on ne suppose plus E de dimension finie.
EXERCICE 13. &/ — @ OO Décomposition en somme d’endomorphismes de rang 1

Soit E un espace vectoriel de dimension finie. Montrer qu'un endomorphisme « de E de rang r est
somme de r endomorphismes de rang 1.

EXERCICE 14. @ OO Un endomorphisme de £ (E)
Soit E un espace vectoriel de dimension finie, soient u, v € £ (E). On définit ¢ de £ (E) dans £ (E),
par¢: f— uo fov. Montrer que ¢ € £ (£(E)) et déterminer a quelle condition ¢ = 0.

EXERCICE 15. & — @©O Noyaux et images itérés
Soit E un espace vectoriel de dimension finie et # un endomorphisme de E.

1. Montrer que la suite de sous-espaces vectoriels (Ker uk) ken (resp. (Im uk) keN) €st croissante
(resp. décroissante) pour l'inclusion.

2. Montrer qu’il existe p € N tel que pour tout k = p, Ker u® = Keru” et Im u* = Im u”.

3. Montrer que, pour cet entier p, E = Keru” @ Im u”.



EXERCICE 16. @©O Inclusion de noyaux
Soient E, F et G trois espaces vectoriels de dimension finie, u € Z(E,F), ve Z(E,G).
Le but de I'exercice est de démontrer que Keru cKerv < (Jwe L(FG):v=wou).

1. On suppose qu'il existe w € Z(F, G) telle que v = w o u. Montrer que Ker u < Ker v.
2. En considérant un supplémentaire S de Ker u dans E et un supplémentaire T de Im u dans

F, construire une application linéaire w € £ (F,G) telle que v = wo u.

EXERCICE 17. & - @©O Indice de nilpotence
Soit E un espace vectoriel de dimension finie n. Soit # un endomorphisme nilpotent de E : il existe

p € N* tel que u” = 0. On veut montrer que u"* = 0.
1. Premiére méthode. Pour tout k € N, on définit N = Ker(u©).

(a) Montrer que la suite (Vi) xen €St croissante pour I'inclusion.
(b) Montrer que si Ny, = Ny, +1, alors la suite (Vi) stationne en N, .

(c) Endéduire que N, = E et conclure.
2. Deuxiéme méthode. On note p le plus petit entier tel que u” = 0.

(a) Montrer que si x ¢ Ker u”_l, alors la famille (x, ulx,..., uP1 (x)) est libre.

(b) Conclure.

EXERCICE 18. @ ©O Reste dans la division euclidienne
Soit E =R, [X] et soient A, B deux polynémes de degré n + 1. On définit 'application ¢ : E — E qui
a un polyndéme P associe le reste de AP dans la division euclidienne par B.

1. Montrer que ¢ est linéaire.
2. Montrer que ¢ est un automorphisme ssi A et B sont premiers entre eux.
EXERCICE 19. & — @©O Suite exacte d’espaces vectoriels
Soient Ey,..., E;, des espaces vectoriels de dimension finie respectivement égale a ay, ..., a,. On

suppose qu’il existe n applications lineaires fy,..., f,-1 telles que, pour chaque k€ {0,...,n—1}, fk
est une application lineaire de E; dans Ey; et

a) fo estinjective;
b) Ker(fi) =Im(fx—;) pourtoutke[l,n—1];

C) fn-1 estsurjective.

n
Montrer que Y (-1)*a; = 0.
k=0



EXERCICE 20. &/ — @©O Interpolation de Hermite
Soient xy, ..., x, des réels deux a deux distincts ; soient y,..., y, et z1,..., 2z, des réels.

1. Montrer qu'il existe un unique polynéme P € Ry,_; [X] tel que

Vie[l,n],P(x;) =y; et P'(x;) = z;.
2. Déterminer une formule explicite pour ce polynoéme.

EXERCICE 21. @©O Somme d’images, somme de noyaux
Soit E un espace vectoriel de dimension finie, soient u, v € £ (E). On suppose que

E=Imu+Imv=XKeru+Kerv.
Montrer que les deux sommes sont directes.

EXERCICE 22. { — @©O Endomorphismes a noyau contraint

Soient E et F deux espaces vectoriels de dimension finie, soit G un sous-espace vectoriel de E. On
définit A={ue L(E,F)|GcKer(u)}.

Montrer que A est un sous-espace vectoriel de Z(E, F) et déterminer sa dimension.

EXERCICE 23. & - @©O Endomorphisme a noyau et image prescrits
Soit E un espace vectoriel de dimension finie. Soient F et G deux sous-espaces vectoriels de E.
Donner une CNS sur (F, G) pour qu’il existe u € £ (E) telque Keru=F etImu = G.

EXERCICE 24. @@ 0O Commutant d’'un projecteur

Soit p un projecteur de rang r dans un espace vectoriel E de dimension finie n. On considere le
commutantde p: €(p) ={uec L(E)| uop=poul.

Montrer que €6 (p) est un sous-espace vectoriel et un sous-anneau de £ (E). Déterminer sa dimension.

EXERCICE 25. & — @@O Dimensions de sous-espaces d’endomorphismes
Soit E un espace vectoriel de dimension n, soit u € £ (E) de rang r. Déterminer la dimension des
espaces vectoriels suivants :

1. A={ve L(E)|vou=0} 3. C=AnB

2. B={ve L(E)|uov=0} 4. D={ve L(E)|uovou=0}.

EXERCICE 26. & — @@0O Endomorphisme cyclique

Soit E un espace vectoriel de dimension n, soit u € Z(E).

On suppose qu'il existe x € E tel que (xg, u(xg),..., u ! (xo)) est une base de E.
Montrer que le commutant de u est égal a K [u] = {P(u), P e K[X]}.

EXERCICE 27. @@0O fg—-gf=ag
Soient E un espace vectoriel de dimension finie, f,ge L(E)eta el telsque fg—gf =ag.

1. Déterminer fg* — g* f, pour tout k € N*.

2. En déduire que g est nilpotente.



EXERCICE 28. & — @@0© I[négalité de Frobenius
Soit u, v et w trois endomorphismes d'un espace vectoriel de dimension finie E. Montrer

rg(uv) +rg(vw) <rg(v) +rg(uvw).

EXERCICE 29. &/ - @@O Lemme des noyaux
Soit E un espace vectoriel de dimension finie. Soit u € £ (E), soient P, Q € K[X]. On suppose que
PAQ=1etque (PQ)(u) = 0. Montrer que E = Ker (P(«)) ® Ker (Q(u)).

4 Dualité en dimension finie

EXERCICE 30. & - @©O Formes linéaires de R, [X]
Dans E = R,[X], on considere les formes linéaires ¢y € E*, définies par VP € E, p(P) = pk (0).
Montrer que la famille (¢¢)}_, est une base de E*.

EXERCICE 31. &/ — @©O Base du dual
Soit E un espace vectoriel de dimension n. Soient ¢1,...,¢, des formes linéaires sur E.
n

Montrer que (¢1,...,¢$,) est une base de E* ssi [ Ker¢p; = {0}.
i=1

EXERCICE 32. @ 0O Hyperplan évitant une partie dénombrable
Soit D une partie dénombrable de R" \ {0}.
Montrer qu'il existe un hyperplan H de R" tel que HNn D = @.

EXERCICE 33. @@0O Un résultat de dualité
Soit E un espace vectoriel de dimension finie et fi,..., f, € E*. Soit f € E* tel que

Vx€eE, (filx)=fo(x) == fu(x) =0) = f(x)=0.
Montrer que f est combinaison linéaire des fi,..., f;-

EXERCICE 34. @@@® Recouvrement dénombrable d’'un espace par des hyperplans
On admet que R n’est pas dénombrable.

1. Soit K un corps quelconque et E un K-espace vectoriel de dimension infinie.
Montrer qu'il existe une suite (Hy) ,en d’hyperplans de E telle que E = U H,.
neN
2. Soit E un R-espace vectoriel de dimension finie.
Montrer qu'il n’existe pas de suite (Hp) ,en d’hyperplans de E telle que E = | H,.

neN

5 Autres exercices

EXERCICE 35. & — @0©O Rang d’'une famille de dérivées
Soit (fi, ..., f) une famille libre de fonctions dérivables R — R. Montrer que rg(f7,..., f;,) = n—1.



EXERCICE 36. &/ — @O0 Polynoémes de Hilbert
XX-1D....X-k+1)

k!

1. Montrer que la famille (Py) xen €St une base de R[X].

Pour tout k dans N, on pose Py =

2. Montrer que, pour tout m e Z et tout k € N, Pi(m) € Z.

3. Déterminer’ensemble des polynémes de R[ X] prenant des valeurs entieéres en chaque entier.
EXERCICE 37. {) - @©O Cardinal d’'un corps fini
Montrer que le cardinal d’un corps fini est de la forme p”, ot peP et n € N*.

EXERCICE 38. & — @@O Idéaux a droite de £ (E)
Soit E un espace vectoriel de dimension 7. Si F est un sous-espace vectoriel de E, on pose

Fr={fe LE)|ImfcF}.

1. Montrer que % est un idéal a droite! de £ (E).
Calculer sa dimension en tant que sous-espace vectoriel de £ (E).

2. Montrer réciproquement que tout idéal a droite de £ (E) est de la forme %, pour un sous-
espace vectoriel F de E.

3. Montrer que si.# est un idéal a droite de £ (E), il existe un projecteur p € .# tel que

F={pof,fe ZE)}.

EXERCICE 39. & — @@0© Dénombrement sur un corps fini
Soit E un espace vectoriel de dimension 7, sur un corps fini F de cardinal q.

1. Déterminer les cardinaux de E et £(E).
2. Déterminer le nombre de bases de E. En déduire | GL(E)|.
3. Déterminer le nombre de sous-espaces vectoriels de E de dimension p, ot p € [1, r].

4. Déterminer le nombre d’endomorphismes de E derang r,our € [1,n—1].

IDans un anneau A non commutatif, un idéal a droite est une partie .# de A qui est un sous-groupe additif de A et
qui vérifie: Vae A,Vxe #,xac 4.



Indications

Exercice 5. Pour 1., considérer la réunion d’'une base de F et d'une base de G.

k k+1
Exercice 8. Déterminer une inégalité entre dim [ F; et dim [ ), pour k € [0, p — 1].
i=1 i=1

Exercice 12. Pour 1., une application linéaire est entierement déterminée par son image sur une
partie génératrice. Pour 2., considérer E = R[X].

Exercice 13. Ecrire 'image de u comme somme directe de r droites.

Exercice 20. Pour 1., convertir le probleme en une question de surjectivité d'une application
linéaire. Pour 2., procéder comme avec les polynémes de Lagrange.

Exercice 22. Une application linéaire u € £ (E, F) est connue sur G (car elle y est nulle). Elle est
donc déterminée par son comportement sur un supplémentaire de G.

Exercice 29. Commencer par traduire I'hypothése P A Q = 1, pour en déduire une relation entre les
endomorphismes P(u) et Q(u).

Exercice 31. Un vecteur x est nul ssi £(x) = 0, pour toute forme linéaire ¢. (pourquoi ?)
Exercice 36. Pour 3., écrire un tel polynéme dans la base de Hilbert.

Exercice 37. Montrer que tout corps fini contient un sous-corps isomorphe a un [, et qu’il peut
étre vu comme un espace vectoriel sur ce sous-corps.



